首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Trehalose is an important protectant in several microorganisms. In Saccharomyces cerevisiae, it is synthesized by a large complex comprising the enzymes Tps1 and Tps2 and the subunits Tps3 and Tsl1, showing an intricate metabolic control.

Methods

To investigate how the trehalose biosynthesis pathway is regulated, we analyzed Tps1 and Tps2 activities as well as trehalose and trehalose-6-phosphate (T6P) contents by mass spectrometry.

Results

Tsl1 deficiency totally abolished the increase in Tps1 activity and accumulation of trehalose in response to a heat stress, whereas absence of Tps3 only reduced Tps1 activity and trehalose synthesis. In extracts of heat stressed cells, Tps1 was inhibited by T6P and by ATP. Mg2 + in the presence of cAMP. In contrast, cAMP-dependent phosphorylation did not inhibit Tps1 in tps3 cells, which accumulated a higher proportion of T6P after stress. Tps2 activity was not induced in a tps3 mutant.

Conclusion

Taken together these results suggest that Tsl1 is a decisive subunit for activity of the TPS complex since in its absence no trehalose synthesis occurred. On the other hand, Tps3 seems to be an activator of Tps2. To perform this task, Tps3 must be non-phosphorylated. To readily stop trehalose synthesis during stress recovery, Tps3 must be phosphorylated by cAMP-dependent protein kinase, decreasing Tps2 activity and, consequently, increasing the concentration of T6P which would inhibit Tps1.

General significance

A better understanding of TPS complex regulation is essential for understanding how yeast deals with stress situations and how it is able to recover when the stress is over.  相似文献   

3.
Proteasome 26S subunit ATPase 4 (PSMC4) could regulate cancer progression. However, the function of PSMC4 in prostate carcinoma (PCa) progression requires further clarification. In the study, PSMC4 and chromobox 3 (CBX3) levels were verified by TCGA data and tissue microarrays. Cell counting kit-8, cell apoptosis, cell cycle, wound healing, transwell and xenograft tumour model assays were performed to verify biological functions of PSMC4 in PCa. RNA-seq, PCR, western blotting and co-IP assays were performed to verify the mechanism of PSMC4. Results showed that PSMC4 level was significantly increased in PCa tissues, and patients with PCa with a high PSMC4 level exhibited shorter overall survival. PSMC4 knockdown markedly inhibited cell proliferation, cell cycle and migration in vitro and in vivo, and significantly promoted cell apoptosis. Then further study revealed that CBX3 was a downstream target of PSMC4. PSMC4 knockdown markedly reduced CBX3 level, and inhibited PI3K-AKT-mTOR signalling. CBX3 overexpression markedly promoted epidermal growth factor receptor (EGFR) level. Finally, PSMC4 overexpression showed reverse effect in DU145 cells, and the effects of PSMC4 overexpression on cell proliferation, migration and clonal formation were rescued by the CBX3 knockdown, and regulated EGFR-PI3K-AKT-mTOR signalling. In conclusion, PSMC4 could regulate the PCa progression by mediating the CBX3-EGFR-PI3K-AKT-mTOR pathway. These findings provided a new target for PCa treatment.  相似文献   

4.
Hypertrophic growth of the cardiomyocytes is one of the core mechanisms underlying cardiac hypertrophy. However, the mechanism underlying cardiac hypertrophy remains not fully understood. Here we provided evidence that G protein-coupled receptor 39 (GPR39) promotes cardiac hypertrophy via inhibiting AMP-activated protein kinase (AMPK) signaling. GRP39 expression is overexpressed in hypertrophic hearts of humans and transverse aortic constriction (TAC)-induced cardiac hypertrophy in mice. In neonatal cardiomyocytes, adenovirus-mediated overexpression of GPR39 promoted angiotensin II-induced cardiac hypertrophy, while GPR39 knockdown repressed hypertrophic response. Adeno-associated virus 9-mediated knockdown of GPR39 suppressed TAC-induced decline in fraction shortening and ejection fraction, increase in heart weight and cardiomyocyte size, as well as overexpression of hypertrophic fetal genes. A mechanism study demonstrated that GPR39 repressed the activation of AMPK to activate the mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase β-1 (S6K1), subsequently promoted de novo protein synthesis. Inhibition of mTOR with rapamycin blocked the effects of GPR39 overexpression on protein synthesis and repressed cardiac hypertrophy. Collectively, our findings demonstrated that GPR39 promoted cardiac hypertrophy via regulating the AMPK–mTOR–S6K1 signaling pathway, and GRP39 can be targeted for the treatment of cardiac hypertrophy.  相似文献   

5.
Rad9–Rad1–Hus1 (9–1–1) is a checkpoint protein complex playing roles in DNA damage sensing, cell cycle arrest, DNA repair or apoptosis. Human 8-oxoguanine DNA glycosylase (hOGG1) is the major DNA glycosylase responsible for repairing a specific aberrantly oxidized nucleotide, 7,8-dihydro-8-oxoguanine (8-oxoG). In this study, we identified a novel interaction between hOGG1 and human 9–1–1, and investigated the functional consequences of this interaction. Co-immunoprecipitation assays using transiently transfected HEK293 cells demonstrated an interaction between hOGG1 and the 9–1–1 proteins. Subsequently, GST pull-down assays using bacterially expressed and purified hOGG1-His and GST-fused 9–1–1 subunits (GST-hRad9, GST-hRad1, and GST-hHus1) demonstrated that hOGG1 interacted directly with the individual subunits of the human 9–1–1 complex. In vitro excision assay, which employed a DNA duplex containing an 8-oxoG/C mismatch, showed that hRad9, hRad1, and hHus1 enhanced the 8-oxoG excision and β-elimination activities of hOGG1. In addition, the presence of hRad9, hRad1, and hHus1 enhanced the formation of covalently cross-linked hOGG1–8-oxoG/C duplex complexes, as determined by a trapping assay using NaBH4. A trimeric human 9–1–1 complex was purified from Escherichia coli cell transformed with hRad9, His-fused hRad1, or His-fused hHus1 expressing vectors. It also showed the similar activity to enhance in vitro hOGG1 glycosylase activity, compared with individual human 9–1–1 subunits. Detection of 8-oxoG in HEK293 cells using flow cytometric and spectrofluorometric analysis revealed that over-expression of hOGG1 or human 9–1–1 reduced the formation of 8-oxoG residues following the H2O2 treatment. The highest 8-oxoG reduction was observed in HEK293 cells over-expressing hOGG1 and all the three subunits of human 9–1–1. These indicate that individual human 9–1–1 subunits and human 9–1–1 complex showed almost the same abilities to enhance the in vitro 8-oxoG excision activity of hOGG1, but that the greatest effect to remove 8-oxoG residues in H2O2-treated cells was derived from the 9–1–1 complex as a whole.  相似文献   

6.
The effects of iron-chelating agents on miscellaneous pathologies are currently largely tested. Due to various indications, different properties for chelators are required. A stoichiometry of the complex in relation to pH is one of the crucial factors. Moreover, the published data on the stoichiometry, especially concerning flavonoids, are equivocal.In this study, a new complementary approach was employed for the determination of stoichiometry in 10 iron-chelating agents, including clinically used drugs, by UV–Vis spectrophotometry at relevant pH conditions and compared with the standard Job’s method.This study showed that the simple approach based on absorbance at the wavelength of complex absorption maximum was sufficient when the difference between absorption maximum of substance and complex was high. However, in majority of substances this difference was much lower (9–73 nm). The novel complementary approach was able to determine the stoichiometry in all tested cases. The major benefit of this method compared to the standard Job’s approach seems to be its capability to reveal a reaction stoichiometry in chelators with moderate affinity to iron.In conclusion, using this complementary method may explain several previous contradictory data and lead to a better understanding of the underlying mechanisms of chelator’s action.  相似文献   

7.
Here we demonstrate that the presence of the L-domain in calpastatins induces biphasic interaction with calpain. Competition experiments revealed that the L-domain is involved in positioning the first inhibitory unit in close and correct proximity to the calpain active site cleft, both in the closed and in the open conformation. At high concentrations of calpastatin, the multiple EF-hand structures in domains IV and VI of calpain can bind calpastatin, maintaining the active site accessible to substrate. Based on these observations, we hypothesize that two distinct calpain–calpastatin complexes may occur in which calpain can be either fully inhibited (I) or fully active (II). In complex II the accessible calpain active site can be occupied by an additional calpastatin molecule, now a cleavable substrate. The consequent proteolysis promotes the accumulation of calpastatin free inhibitory units which are able of improving the capacity of the cell to inhibit calpain. This process operates under conditions of prolonged [Ca2 +] alteration, as seen for instance in Familial Amyotrophic Lateral Sclerosis (FALS) in which calpastatin levels are increased. Our findings show that the L-domain of calpastatin plays a crucial role in determining the formation of complexes with calpain in which calpain can be either inhibited or still active. Moreover, the presence of multiple inhibitory domains in native full-length calpastatin molecules provides a reservoir of potential inhibitory units to be used to counteract aberrant calpain activity.  相似文献   

8.
9.
10.
Sun  Wenjing  Lu  Hongquan  Lyu  Lechun  Yang  Ping  Lin  Zhi  Li  Ling  Sun  Lin  Lu  Di 《Journal of physiology and biochemistry》2019,75(4):531-547
Journal of Physiology and Biochemistry - Inflammation is a pivotal feature of myocardial reperfusion–induced microvascular injury and dysfunction. However, the molecular mechanisms by which...  相似文献   

11.
BackgroundGallbladder cancer (GBC) is among the most lethal malignancies in the world, with a prognosis that is extremely poor. The results of previous studies suggest that tripartite motif containing 37 (TRIM37) contributes to the progression of numerous types of cancer. Nevertheless, there is little knowledge about the molecular mechanisms and functions of TRIM37 in GBC.MethodsA clinical significance assessment was conducted on TRIM37 following its detection by immunohistochemistry. In vitro and in vivo functional assays were performed to investigate the role of TRIM37 in GBC.ResultsIn this study, TRIM37 is upregulated in GBC tissues, which is associated with decreased histological differentiation, advanced TNM stage, and shorter overall survival rates. In vitro, TRIM37 knockdown inhibited cell proliferation and promoted apoptosis, and in vivo, TRIM37 knockdown suppressed GBC growth. Contrary to this, cell proliferation is increased in GBC cells when overexpression of TRIM37 is expressed. Mechanistic investigations revealed that TRIM37 promotes GBC progression through activation of the Wnt/β‑catenin signaling pathway via degradation of Axin1.ConclusionThe present study suggests that TRIM37 contributes to the development of GBC and thus provides an important biomarker for predicting GBC prognosis and an effective target for therapeutic intervention.  相似文献   

12.
The identification and studying the molecular bases of functioning of new cytotoxic agents finds an important implication in developing drugs for fighting with tumors. While investigating the cytotoxic action of protein complex Tag7-Hsp70 which was opened in our laboratory previously we found that Tag7-Hsp70 demonstrated the same specificity in regard to different tumor target cells as it was for classical cytokine TNF-α. L-929 cells and Jurkat cells appeared to be good targets representing up to 30% of dead cells within a population and HeLa cells-bad targets representing less than 5% of dead cells after 20 h of incubation with either of the cytotoxic agents. While investigating the action of either TNF-α or Tag7-Hsp70 on L-929 cells we detected two peaks of death: after 3 h and after 20 h. For both cytotoxic agents we observed the first, smaller (13–15%), peak to be eliminated after the addition of caspase inhibitor YVAD-CHO and the second, greater (25–30%), peak to become even bigger in presence of caspase inhibitor. Probably, protein complex Tag7-Hsp70 interacts like TNF-α with a receptor on the surface of tumor cells that results in triggering two alternative mechanisms of programmed cell death: apoptosis and necroptosis.  相似文献   

13.
Cardiac fibrosis after myocardial infarction (MI) is mainly associated with cardiac fibroblasts and its differentiation is the key pathological process. However, the cellular mechanism of fibroblast-to-myofibroblast conversion has not been clarified and a deeper mechanistic understanding is needed. We found that miR-574–5p was up-regulated in TGF-β-induced myofibroblast differentiation. Silencing transiently miR-574–5p in HCFs, we found that suppression of miR-574–5p decreased myofibroblasts differentiation as validated by expression levels of fibrosis related genes, EDU imaging assay, wound healing assay and transwell assays. Conversely, overexpression of miR-574–5p displayed opposite results. ARID3A was verified as a direct target gene of miR-574–5p and decreased level of ARID3A forced fibroblast-to-myofibroblast differentiation of TGF-β-induced HCFs. Our data suggests that miR-574–5p plays a pivotal role in human cardiac fibroblasts (HCFs) myofibroblast differentiation and demonstrates that miR-574–5p and arid3a may be a novel therapeutic target for cardiac fibrosis.  相似文献   

14.
15.
16.
The role of thermal fluctuations in the conformational dynamics of a single closed filament is studied. It is shown that, due to the interaction between charges and bending degrees of freedom, initially circular chains may undergo transformation to polygonal shape.  相似文献   

17.
BLM and WRN are members of the RecQ family of DNA helicases, and in humans their loss is associated with syndromes characterized by genome instability and cancer predisposition. As the only RecQ DNA helicase in the yeast Saccharomyces cerevisiae, Sgs1 is known to safeguard genome integrity through its role in DNA recombination. Interestingly, WRN, BLM and Sgs1 are all known to be modified by the small ubiquitin-related modifier (SUMO), although the significance of this posttranslational modification remains elusive. Here, we demonstrate that Sgs1 is specifically sumoylated under the stress of DNA double strand breaks. The major SUMO attachment site in Sgs1 is lysine 621, which lies between the Top3 binding domain and the DNA helicase domain. Surprisingly, sumoylation of K621 was found to be uniquely required for Sgs1’s role in telomere–telomere recombination. In contrast, sumoylation was dispensable for Sgs1’s roles in DNA damage tolerance, supppression of direct repeat and rDNA recombination, and promotion of top3Δ slow growth. Our results demonstrate that although modification by SUMO is a conserved feature of RecQ family DNA helicases, the major sites of modification are located on different domains of the protein in different organisms. We suggest that sumoylation of different domains of RecQ DNA helicases from different organisms contributes to conserved roles in regulating telomeric recombination.  相似文献   

18.
We present results of the modeling for the hydrolysis reaction of guanosine triphosphate (GTP) in the RAS–GAP protein complex using essentially ab initio quantum chemistry methods. One of the approaches considers a supermolecular cluster composed of 150 atoms at a consistent quantum level. Another is a hybrid QM/MM method based on the effective fragment potential technique, which describes interactions between quantum and molecular mechanical subsystems at the ab initio level of the theory. Our results show that the GTP hydrolysis in the RAS–GAP protein complex can be modeled by a substrate-assisted catalytic mechanism. We can locate a configuration on the top of the barrier corresponding to the transition state of the hydrolysis reaction such that the straightforward descents from this point lead either to reactants GTP+H2O or to products guanosine diphosphate (GDP)+H2PO4?. However, in all calculations such a single-step process is characterized by an activation barrier that is too high. Another possibility is a two-step reaction consistent with formation of an intermediate. Here the Pγ-O(Pβ) bond is already broken, but the lytic water molecule is still in the pre-reactive state. We present arguments favoring the assumption that the first step of the GTP hydrolysis reaction in the RAS–GAP protein complex may be assigned to the breaking of the Pγ-O(Pβ) bond prior to the creation of the inorganic phosphate.  相似文献   

19.
The purpose of this study was to investigate the role of Poly (C)-binding protein 2 (PCBP2) and the related signaling pathway in glioma progression. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were performed to measure PCBP2 messenger RNA and protein expression in glioma tissues or cells. Cell transfection was completed using Lipofectamine 2000. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Transwell assay and flow cytometry assay were used to explore the effects of PCBP2 expression on biological behaviors of glioma cells. Western blot assay was used for the detection of pathway related proteins. Expression of PCBP2 in glioma tissues and cells were higher than that in paracancerous tissues and normal cells (both p < .01). Moreover, the elevated expression of PCBP2 was significantly correlated with tumor size (p = .001) and WHO stage (p = .010). Knockdown of PCBP2 could suppress proliferation, migration and invasion of glioma cells and promote apoptosis. Besides, the expression of transforming growth factor-β (TGF-β) pathway related proteins TGF-β1, p-Smad2 and p-Smad7 were decreased following the downregulation of PCBP2. PCBP2 also inhibited FHL3 expression by binding to FHL3-3′UTR. The inhibition of FHL3 could reverse the antitumor action caused by PCBP2 silencing. In vivo assay, PCBP2 was also found to inhibit the tumor growth of glioma. PCBP2 activates TGF-β/Smad signaling pathway by inhibiting FHL3 expression, thus promoting the development and progression of glioma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号