首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
AIM. This study was designed to examine whether the class I and class IIa histone deacetylase (HDAC) inhibitors, sodium butyrate and sodium valproate alter the expression of human NCOR1 and/or NCOR2 genes coding for N-CoR (nuclear receptor corepressor) and SMRT (silencing mediator for retinoid and thyroid hormone receptors), respectively. METHODS: Human leukemia HL-60 cells were treated for 24 h with 0.5 and 1 mM sodium butyrate, 1 to 3 mM sodium valproate, 1 mcM all-trans retinoic acid (ATRA) or cotreated with 1 mcM ATRA and 0.5 mM sodium butyrate. The acetylation of histones H3 and H4 was analysed by western blotting. The levels of NCOR1 and NCOR2 mRNA were determined by quantitative real-time PCR. Expression of NCF2 gene coding for the NADPH oxidase subunit p67phox was evaluated as a marker of myeloid differentiation. Results. Both butyrate and valproate increased the acetylation of histone H3 at Lys9 and/or Lys14 as well as histone H4 at Lys12. Both HDAC inhibitors caused a significant increase in NCF2 mRNA levels without affecting NCOR1 or NCOR2 mRNA levels. Similarly, ATRA alone or in combination with butyrate induced NCF2 gene expression without any significant influence on the expression of NCOR1 or NCOR2 genes. CONCLUSION: We conclude that inhibitors of class I and class IIa HDACs do not alter the expression of human NCOR1 or NCOR2 genes and that the onset of myeloid differentiation is not accompanied by induction or repression of these genes in HL-60 cells.  相似文献   

3.
4.

Background

The NCI-60 is a panel of 60 diverse human cancer cell lines used by the U.S. National Cancer Institute to screen compounds for anticancer activity. We recently clustered genes based on correlation of expression profiles across the NCI-60. Many of the resulting clusters were characterized by cancer-associated biological functions. The set of curated glioblastoma (GBM) gene expression data from the Cancer Genome Atlas (TCGA) initiative has recently become available. Thus, we are now able to determine which of the processes are robustly shared by both the immortalized cell lines and clinical cancers.

Results

Our central observation is that some sets of highly correlated genes in the NCI-60 expression data are also highly correlated in the GBM expression data. Furthermore, a “double fishing” strategy identified many sets of genes that show Pearson correlation ≥0.60 in both the NCI-60 and the GBM data sets relative to a given “bait” gene. The number of such gene sets far exceeds the number expected by chance.

Conclusion

Many of the gene-gene correlations found in the NCI-60 do not reflect just the conditions of cell lines in culture; rather, they reflect processes and gene networks that also function in vivo. A number of gene network correlations co-occur in the NCI-60 and GBM data sets, but there are others that occur only in NCI-60 or only in GBM. In sum, this analysis provides an additional perspective on both the utility and the limitations of the NCI-60 in furthering our understanding of cancers in vivo.  相似文献   

5.
6.
BACKGROUND AND OBJECTIVE: The epidermal growth factor receptor (EGFR) plays a major role in cell proliferation of epithelial tissues, and its alterations frequently contribute to oncogenesis. Several common polymorphisms of the EGFR gene have been described, at the level of both coding and regulatory sequences. Some of these polymorphisms are associated with alterations of EGFR expression and/or activity and may have an impact on the activity of anticancer agents. This study aims to analyze the relationships between specific EGFR functional polymorphisms and anticancer drug activity. METHOD: We investigated, in the panel of 60 human tumor cell lines established by the National Cancer Institute (NCI-60), whether the EGFR polymorphisms -216G>T, -191C>A, Arg521Lys (R521K), Val592Ala (V592A), and Cys624Phe (C624F), and the intron 1 (CA)n repeat were associated with EGFR gene expression and the in vitro cytotoxicity of anticancer agents using data extracted from the NCI database. We also looked for mutations of exons 18-21, known to enhance the activity of tyrosine kinase inhibitors, and the deletion of exons 2-7, associated to the oncogenesis of glioblastomas. RESULTS: In the NCI-60 cell lines, only two mutations were observed, both in exon 19, in a leukemia and melanoma cell line. These mutations have not been described previously in clinical samples and their functional role is uncertain. The allele frequencies of the -216G>T, -191C>A, and R521K single nucleotide polymorphisms (SNPs) in the NCI-60 panel were 33%, 8.5%, and 27%, respectively; the V592A and C624F SNPs were not found in any NCI-60 cell line. The intron 1 CA repeat was highly variable in the cell lines; 32 cell lines having a total number of repeats below 35, and 27 having a total number of repeats above 35.The heterozygous and variant homozygous cell lines for the -216G>T SNP presented a significantly higher expression of the EGFR gene than the homozygous wild-type lines. In contrast, there was no association between the -191C>A or R521K SNPs and EGFR gene expression. No association could be detected between the number of CA repeats in intron 1 and the expression of EGFR.The cell lines having at least one variant T allele at the -216G>T SNP were more sensitive to erlotinib and less sensitive to geldanamycin, topoisomerase I and II inhibitors, and alkylating agents than those without a variant allele. No relationship was detected between anticancer drug sensitivity and the -191C>A SNP. The R521K SNP was associated to lower sensitivity to alkylating agents. The number of CA repeats was associated with significant differences in anticancer drug activity: a high total number of CA repeats (>35 per diploid genome) was associated to increased sensitivity to alkylating agents and topoisomerase I and II inhibitors. DISCUSSION: We provide evidence in this work that EGFR polymorphisms are associated with significant differences in the in vitro cytotoxicity of several types of DNA-interfering agents. Studies attempting a clinical validation of these clues are warranted.  相似文献   

7.
BackgroundDrug resistance is an important cause of death for most patients with chronic myeloid leukemia (CML). The bone marrow microenvironment is believed to be mainly responsible for resistance to BCR-ABL tyrosine kinase inhibitors. The mechanism involved, however, is still unclear.MethodsBioinformatic analysis from GEO database of AKR1C3 was utilized to identify the AKR1C3 expression in CML cells under bone marrow microenvironment. Western blot and qPCR were performed to detect the AKR1C3 expression in two CML cell lines K562 and KU812 cultured +/‐ bone microenvironment derived stromal cells. CCK-8, soft agar colony assay, and Annexin V/PI assay were performed to detect the sensitivity of CML cells (K562 and KU812) to Imatinib under a gain of or loss of function of AKR1C3 treatment. The CML murine model intravenous inoculated with K562-OE-vector and K562-OE-AKR1C3 cells were established to estimate the effect of AKR1C3 inhibitor Indomethacin on Imatinib resistance. The bioinformatic analysis of miRNA databases was used to predict the potential miRNAs targeting AKR1C3. And the luciferase assay was utilized to validate the target relationship between miR-379-5p and AKR1C3. And, the soft agar colony assay and Annexin V/PI were used to validate the effect of miR-379-5p in AKR1C3 induced Imatinib resistance.ResultsIn present study, we investigated AKR1C3 was highly expressed in CML under bone marrow microenvironment. AKR1C3 decreased Imatinib activity in K562 and KU812 cells, while inhibition of AKR1C3 could enhance Imatinib sensitivity in vitro study. Furthermore, murine model results showed combination use of AKR1C3 inhibitor Indomethacin effectively prolong mice survival, indicating that AKR1C3 is a promising target to enhance Imatinib treatment. Mechanically, AKR1C3 was found to be suppressed by miR-379-5p, which was down-expression in bone marrow microenvironment. Besides, we found miR-379-5p could bind AKR1C3 3’UTR but not degrade its mRNA level. Further, gain of miR-379-5p rescued the imatinib resistance induced by AKR1C3 overexpression in CML cells.ConclusionsAltogether, our study identifies a novel signaling regulation of miR-379-5p/AKR1C3/EKR axis in regulating IM resistance in CML cell, and provides a scientific base for exploring AKR1C3 as a biomarker in impeding IM resistance in CML.  相似文献   

8.
The degree to which gene expression covaries between different primary tissues within an individual is not well defined. We hypothesized that expression that is concordant across tissues is more likely influenced by genetic variability than gene expression which is discordant between tissues. We quantified expression of 11,873 genes in paired samples of primary leukemia cells and normal leukocytes from 92 patients with acute lymphoblastic leukemia (ALL). Genetic variation at >500,000 single nucleotide polymorphisms (SNPs) was also assessed. The expression of only 176/11,783 (1.5%) genes was correlated (p<0.008, FDR = 25%) in the two tissue types, but expression of a high proportion (20 of these 176 genes) was significantly related to cis-SNP genotypes (adjusted p<0.05). In an independent set of 134 patients with ALL, 14 of these 20 genes were validated as having expression related to cis-SNPs, as were 9 of 20 genes in a second validation set of HapMap cell lines. Genes whose expression was concordant among tissue types were more likely to be associated with germline cis-SNPs than genes with discordant expression in these tissues; genes affected were involved in housekeeping functions (GSTM2, GAPDH and NCOR1) and purine metabolism.  相似文献   

9.
Although there is extensive information on gene expression and molecular interactions in various cell types, integrating those data in a functionally coherent manner remains challenging. This study explores the premise that genes whose expression at the mRNA level is correlated over diverse cell lines are likely to function together in a network of molecular interactions. We previously derived expression-correlated gene clusters from the database of the NCI-60 human tumor cell lines and associated each cluster with function categories of the Gene Ontology (GO) database. From a cluster rich in genes associated with GO categories related to cell migration, we extracted 15 genes that were highly cross-correlated; prominent among them were RRAS, AXL, ADAM9, FN14, and integrin-beta1. We then used those 15 genes as bait to identify other correlated genes in the NCI-60 database. A survey of current literature disclosed, not only that many of the expression-correlated genes engaged in molecular interactions related to migration, invasion, and metastasis, but that highly cross-correlated subsets of those genes engaged in specific cell migration processes. We assembled this information in molecular interaction maps (MIMs) that depict networks governing 3 cell migration processes: degradation of extracellular matrix, production of transient focal complexes at the leading edge of the cell, and retraction of the rear part of the cell. Also depicted are interactions controlling the release and effects of calcium ions, which may regulate migration in a spaciotemporal manner in the cell. The MIMs and associated text comprise a detailed and integrated summary of what is currently known or surmised about the role of the expression cross-correlated genes in molecular networks governing those processes.  相似文献   

10.
11.
MOTIVATION: Panels of cell lines such as the NCI-60 have long been used to test drug candidates for their ability to inhibit proliferation. Predictive models of in vitro drug sensitivity have previously been constructed using gene expression signatures generated from gene expression microarrays. These statistical models allow the prediction of drug response for cell lines not in the original NCI-60. We improve on existing techniques by developing a novel multistep algorithm that builds regression models of drug response using Random Forest, an ensemble approach based on classification and regression trees (CART). RESULTS: This method proved successful in predicting drug response for both a panel of 19 Breast Cancer and 7 Glioma cell lines, outperformed other methods based on differential gene expression, and has general utility for any application that seeks to relate gene expression data to a continuous output variable. Implementation: Software was written in the R language and will be available together with associated gene expression and drug response data as the package ivDrug at http://r-forge.r-project.org.  相似文献   

12.
13.
Polycomb group complex(PcG)作为发挥转录抑制作用的重要表观遗传调控复合物,参与发育、衰老以及肿瘤发生等重要病生理过程。PcG成员众多,分为PRC1与PRC2两种复合物,各组分间功能既协同,又不失特性。PRC1中的CBX4独特的结构域使其功能尤为特殊。近年发现,作为一类造血干细胞恶性克隆性疾病,白血病中常伴有PcG基因的异常表达或者突变。本研究通过qPCR发现,在慢性粒细胞白血病(chronic myeloid leukemia, CML)患者外周血白细胞中存在CBX4的表达明显下调,而PcG经典靶基因HOX家族中的HOXA5则表现为上调。给予伊马替尼(Imatinib)治疗后,二者均向相反方向恢复至正常人的表达水平,并且CBX4的表达水平与CML的经典分子标志物BCR ABL1融合基因有较好的相关性。上述结果提示,CBX4可以作为CML潜在的预后标志物。为了进一步揭示CBX4与HOXA5是否存在相互作用关系,本文通过双荧光素酶实验证实,CBX4能通过HOXA5的启动子而负调控其表达。本研究发现,CBX4与HOXA5在CML中存在负相关的异常表达,且证明CBX4可作为HOXA5的负调控因子。  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号