共查询到20条相似文献,搜索用时 9 毫秒
1.
Background
Expression Quantitative Trait Locus (eQTL) mapping methods have been used to identify the genetic basis of gene expression variations. To map eQTL, thousands of expression profiles are related with sequence polymorphisms across the genome through their correlated variations. These eQTL distribute in many chromosomal regions, each of which can include many genes. The large number of mapping results produced makes it difficult to consider simultaneously the relationships between multiple genomic regions and multiple expressional profiles. There is a need for informative bioinformatics tools to assist the visualization and interpretation of these mapping results. 相似文献2.
2b-RAD: a simple and flexible method for genome-wide genotyping 总被引:3,自引:0,他引:3
We describe 2b-RAD, a streamlined restriction site-associated DNA (RAD) genotyping method based on sequencing the uniform fragments produced by type IIB restriction endonucleases. Well-studied accessions of Arabidopsis thaliana were genotyped to validate the method's accuracy and to demonstrate fine-tuning of marker density as needed. The simplicity of the 2b-RAD protocol makes it particularly suitable for high-throughput genotyping as required for linkage mapping and profiling genetic variation in natural populations. 相似文献
3.
4.
5.
6.
7.
8.
Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions 总被引:26,自引:0,他引:26
Impey S McCorkle SR Cha-Molstad H Dwyer JM Yochum GS Boss JM McWeeney S Dunn JJ Mandel G Goodman RH 《Cell》2004,119(7):1041-1054
9.
Annarita D’Addabbo Orazio Palmieri Anna Latiano Vito Annese Sayan Mukherjee Nicola Ancona 《BMC genomics》2011,12(1):1-7
Background
Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding.Result
To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp.Conclusion
BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp. 相似文献10.
A genome-wide detection of copy number variation using SNP genotyping arrays in Beijing-You chickens
Wei Zhou Ranran Liu Jingjing Zhang Maiqing Zheng Peng Li Guobin Chang Jie Wen Guiping Zhao 《Genetica》2014,142(5):441-450
Copy number variation (CNV) has been recently examined in many species and is recognized as being a source of genetic variability, especially for disease-related phenotypes. In this study, the PennCNV software, a genome-wide CNV detection system based on the 60 K SNP BeadChip was used on a total sample size of 1,310 Beijing-You chickens (a Chinese local breed). After quality control, 137 high confidence CNVRs covering 27.31 Mb of the chicken genome and corresponding to 2.61 % of the whole chicken genome. Within these regions, 131 known genes or coding sequences were involved. Q-PCR was applied to verify some of the genes related to disease development. Results showed that copy number of genes such as, phosphatidylinositol-5-phosphate 4-kinase II alpha, PHD finger protein 14, RHACD8 (a CD8α- like messenger RNA), MHC B-G, zinc finger protein, sarcosine dehydrogenase and ficolin 2 varied between individual chickens, which also supports the reliability of chip-detection of the CNVs. As one source of genomic variation, CNVs may provide new insight into the relationship between the genome and phenotypic characteristics. 相似文献
11.
A new approach to rapid, genome-wide identification and ranking of horizontal transfer candidate proteins is presented. The method is quantitative, reproducible, and computationally undemanding. It can be combined with genomic signature and/or phylogenetic tree-building procedures to improve accuracy and efficiency. The method is also useful for retrospective assessments of horizontal transfer prediction reliability, recognizing orthologous sequences that may have been previously overlooked or unavailable. These features are demonstrated in bacterial, archaeal, and eukaryotic examples. 相似文献
12.
Yuchao Jiang Derek A. Oldridge Sharon J. Diskin Nancy R. Zhang 《Nucleic acids research》2015,43(6):e39
High-throughput sequencing of DNA coding regions has become a common way of assaying genomic variation in the study of human diseases. Copy number variation (CNV) is an important type of genomic variation, but detecting and characterizing CNV from exome sequencing is challenging due to the high level of biases and artifacts. We propose CODEX, a normalization and CNV calling procedure for whole exome sequencing data. The Poisson latent factor model in CODEX includes terms that specifically remove biases due to GC content, exon capture and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based recursive segmentation procedure that explicitly models the count-based exome sequencing data. CODEX is compared to existing methods on a population analysis of HapMap samples from the 1000 Genomes Project, and shown to be more accurate on three microarray-based validation data sets. We further evaluate performance on 222 neuroblastoma samples with matched normals and focus on a well-studied rare somatic CNV within the ATRX gene. We show that the cross-sample normalization procedure of CODEX removes more noise than normalizing the tumor against the matched normal and that the segmentation procedure performs well in detecting CNVs with nested structures. 相似文献
13.
Keleş S 《Biometrics》2007,63(1):10-21
Chromatin immunoprecipitation followed by DNA microarray analysis (ChIP-chip methodology) is an efficient way of mapping genome-wide protein-DNA interactions. Data from tiling arrays encompass DNA-protein interaction measurements on thousands or millions of short oligonucleotides (probes) tiling a whole chromosome or genome. We propose a new model-based method for analyzing ChIP-chip data. The proposed model is motivated by the widely used two-component multinomial mixture model of de novo motif finding. It utilizes a hierarchical gamma mixture model of binding intensities while incorporating inherent spatial structure of the data. In this model, genomic regions belong to either one of the following two general groups: regions with a local protein-DNA interaction (peak) and regions lacking this interaction. Individual probes within a genomic region are allowed to have different localization rates accommodating different binding affinities. A novel feature of this model is the incorporation of a distribution for the peak size derived from the experimental design and parameters. This leads to the relaxation of the fixed peak size assumption that is commonly employed when computing a test statistic for these types of spatial data. Simulation studies and a real data application demonstrate good operating characteristics of the method including high sensitivity with small sample sizes when compared to available alternative methods. 相似文献
14.
15.
Guy Aidelberg Rachel Aronoff Tatiana Eliseeva Francisco Javier Quero Hortense Vielfaure Martin Codyre Kathrin Hadasch Ariel B. Lindner 《Journal of biomolecular techniques》2021,32(3):89
Surveillance screening at scale to identify people infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prior to extensive transmission is key to bringing an end to the coronavirus disease 2019 (COVID-19) pandemic, even though vaccinations have already begun. Here we describe Corona Detective, a sensitive and rapid molecular test to detect the virus, based on loop-mediated isothermal amplification, which could be applied anywhere at low cost. Critically, the method uses freeze-dried reagents, readily shipped without cold-chain dependence. The reaction detects the viral nucleocapsid gene through a sequence-specific quenched-fluorescence readout, which avoids false positives and also allows multiplex detection with an internal control cellular RNA. Corona Detective can be used in 8-tube strips to be read with a simple open-design fluorescence detector. Other methods to use and produce Corona Detective locally in a variety of formats are possible and already openly shared. Detection specificity is ensured through inclusion of positive and negative control reactions to run in parallel with the diagnostic reactions. A simple user protocol, including sample preparation, and a bioinformatics pipeline to ensure that viral variants will still be detectable with SARS-CoV-2 primer sets complete the method. Through rapid production and distribution of Corona Detective reactions, quite inexpensive at scale, daily or weekly surveillance testing of large populations, without waiting for symptoms to develop, is anticipated, in combination with vaccination campaigns, to finally control this pandemic. 相似文献
16.
17.
18.
Lukas Forer Sebastian Schönherr Hansi Weissensteiner Florian Haider Thomas Kluckner Christian Gieger Heinz-Erich Wichmann Günther Specht Florian Kronenberg Anita Kloss-Brandstätter 《BMC bioinformatics》2010,11(1):318