首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L119GF --> AAA mutation affects the mode of RDM1 binding to single-stranded DNA.  相似文献   

2.
Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.  相似文献   

3.
4.
The fatty acid-binding protein from human skeletal muscle   总被引:3,自引:0,他引:3  
Fatty acid-binding protein (FABP) was isolated from human skeletal muscle by gel filtration and anion- and cation-exchange chromatography. The isolation procedure, however, with rat and pig skeletal muscle gave mostly inactive preparations. Rat muscle FABP preparations contained parvalbumin as a contaminant. FABP from human muscle had a Mr of about 15 kDa, a pI value of 5.2, and a Kd value with oleic acid of 0.50 microM. Skeletal muscle and heart FABPs and their antisera showed a strong cross-reactivity on Western blots and in enzyme-linked immunosorbent assays (ELISA). No cross-reactivity was observed with liver FABP and its antiserum. On the basis of amino acid composition, electrophoretic behavior, fatty acid binding, and immunochemical properties, human skeletal muscle FABP must be similar or closely related to human heart FABP. The FABP content determined by ELISA was comparable in various human muscles and cultured muscle cells, but lower than that in rat muscles.  相似文献   

5.
Nucleic acid-binding ligands identify new mechanisms to inhibit telomerase   总被引:1,自引:0,他引:1  
We screened a small library of known nucleic acid-binding ligands in order to identify novel inhibitors of recombinant human telomerase. Inhibitory compounds were classified into two groups: Group I inhibitors had a notably greater effect when added prior to telomerase assemblage and Group II inhibitors displayed comparable inhibition when added before or after telomerase assemblage. Hoechst 33258, a Group I inhibitor, was found to interact tightly (KD = 0.36 microM) with human telomerase RNA (hTR) leading us to propose that hTR is the molecular target for this and other Group I inhibitors. Our results suggest that hTR can be exploited as a small-molecule drug target and provide several new structural motifs for the further development of novel telomerase inhibitors.  相似文献   

6.
《Gene》1997,190(1):223-225
We have already reported that human fibroblast 34-kDa hyaluronic acid-binding protein (HABP) is identical with P32, the protein co-purified with splicing factor SF-2 [Deb and Datta (1996) J. Biol. Chem. 271, 2206–2212]. Data search further revealed that it has 92% sequence homology with a murine protein YL2 which interacts with HIV1 Rev. In this paper we have successfully demonstrated that HIV1 Rev binds with labeled 34-kDa HABP which can be competed with excess unlabeled HABP, suggesting this protein can be a cellular factor promoting HIV1 Rev to function. Interestingly, the multifunctional nature of HABP has been elucidated as it has 100% homology with another protein gClq, the complement protein. The distinct non-overlapping binding motifs for HA and gClq have been identified in the same protein, suggesting that either the protein can function independently or its activity is regulated by ligand binding, wherein its binding to one of the ligands may modulate the receptor activity of the other ligand.  相似文献   

7.
The three-dimensional structure of recombinant human muscle fatty acid-binding protein with a bound fatty acid has been solved and refined with x-ray diffraction data to 2.1 A resolution. The refined model has a crystallographic R factor of 19.5% for data between 9.0 and 2.1 A (7243 unique reflections) and root-mean-square deviations in bond length and bond angle of 0.013 A and 2.7 degrees. The protein contains 10 antiparallel beta-strands and two short alpha-helices which are arranged into two approximately orthogonal beta-sheets. Difference electron density maps and a multiple isomorphous derivative electron density map showed the presence of a single bound molecule of a long chain fatty acid within the interior core of the protein. The hydrocarbon tail of the fatty acid was found to be in a "U-shaped" conformation. Seven ordered water molecules were also identified within the interior of the protein in a pocket on the pseudo-si face of the fatty acid's bent hydrocarbon tail. The methylene tail of the fatty acid forms van der Waals interactions with atoms from 13 residues and three ordered waters. The carboxylate of the fatty acid is located in the interior of the protein where it forms hydrogen bonds with the side chains of Tyr128 and Arg126 and two ordered water molecules. A comparison of the three-dimensional structure of human muscle fatty acid-binding protein and rat intestinal fatty acid-binding protein shows strong similarity. Both proteins bind a single fatty acid within their interior cores, but the bound fatty acids are very different in their conformations and interactions. These findings suggest that the intestinal and muscle fatty acid-binding proteins have evolved distinct binding sites in order to satisfy different requirements within the tissues where they are expressed.  相似文献   

8.
A human gene coding for a membrane-associated nucleic acid-binding protein   总被引:2,自引:0,他引:2  
Studies to clone a cell-surface DNA-binding protein involved in the binding and internalization of extracellular DNA have led to the isolation of a gene for a membrane-associated nucleic acid-binding protein (MNAB). The full-length cDNA is 4.3 kilobases with an open reading frame of 3576 base pairs encoding a protein of approximately 130 kDa (GenBank accession numbers and ). The MNAB gene is on human chromosome 9 with wide expression in normal tissues and tumor cells. A C3HC4 RING finger and a CCCH zinc finger have been identified in the amino-terminal half of the protein. MNAB bound DNA (K(D) approximately 4 nm) and mutagenesis of a single conserved amino acid in the zinc finger reduced DNA binding by 50%. A potential transmembrane domain exists near the carboxyl terminus. Antibodies against the amino-terminal half of the protein immunoprecipitated a protein of molecular mass approximately 150 kDa and reacted with cell surfaces. The MNAB protein is membrane-associated and primarily localized to the perinuclear space, probably to the endoplasmic reticulum or trans-Golgi network. Characterization of the MNAB protein as a cell-surface DNA-binding protein, critical in binding and internalization of extracellular DNA, awaits confirmation of its localization to cell surfaces.  相似文献   

9.
Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLD-U). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUS-positive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.  相似文献   

10.
Summary FABPs in the various tissues play an important role in the intracellular fatty acid transport and metabolism. Reye's syndrome (RS) and multisystemic lipid storage (MLS) are human disorders characterized by a disturbance of lipid metabolism of unknown etiology. We investigated for the first time L-FABP in these two conditions. Affinity purified antibodies against chicken L-FABP were raised in rabbits, and found to cross-react specifically with partially purified human L-FABP. L-FABP content in liver samples of two patients with RS and MLS was investigated by immuno-histochemistry, SDS-PAGE and ELISA. L-FABP immuno-histochemistry showed increased reactivity in the liver of RS patient and normal reactivity in MLS liver. L-FABP increase in RS liver was confirmed by densitometry of SDS-PAGE and ELISA method. By these two methods the increase amounted to 180% and 199% (p < 0.02), respectively, as compared to controls. A possible role of L-FABP in the pathogenesis of RS is discussed.  相似文献   

11.
Expression of brain fatty acid-binding protein (B-FABP) is spatially and temporally correlated with neuronal differentiation during brain development. Isothermal titration calorimetry demonstrates that recombinant human B-FABP clearly exhibits high affinity for the polyunsaturated n-3 fatty acids alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, and for monounsaturated n-9 oleic acid (K(d) from 28 to 53 nm) over polyunsaturated n-6 fatty acids, linoleic acid, and arachidonic acid (K(d) from 115 to 206 nm). B-FABP has low binding affinity for saturated long chain fatty acids. The three-dimensional structure of recombinant human B-FABP in complex with oleic acid shows that the oleic acid hydrocarbon tail assumes a "U-shaped" conformation, whereas in the complex with docosahexaenoic acid the hydrocarbon tail adopts a helical conformation. A comparison of the three-dimensional structures and binding properties of human B-FABP with other homologous FABPs, indicates that the binding specificity is in part the result of nonconserved amino acid Phe(104), which interacts with double bonds present in the lipid hydrocarbon tail. In this context, analysis of the primary and tertiary structures of human B-FABP provides a rationale for its high affinity and specificity for polyunsaturated fatty acids. The expression of B-FABP in glial cells and its high affinity for docosahexaenoic acid, which is known to be an important component of neuronal membranes, points toward a role for B-FABP in supplying brain abundant fatty acids to the developing neuron.  相似文献   

12.
Recently, a series of intriguing observations expanded the list of a number of metabolic enzymes known to be associated with various forms of nucleic acids, including single- and double-stranded DNA, cognate and noncognate RNAs, and specific tRNAs. There is no clear reason why such a phenomenon should take place in contemporary cell physiology, or, further, why such a property has evolved at all. Sixteen known cases are presented in an attempt to delineate any common features of these enzymes. Apart from their ancient nature, as judged by their wide distribution and their participation in fundamental biochemical pathways, it appears that these enzymes do not share any structural or functional characteristics. Given that most of these proteins require nucleotide-based cofactors for their activity, it is proposed that they may represent genuine molecular fossils of the transition from an RNA to a protein world. Their nucleic acid-binding properties are in keeping with previously proposed hypotheses regarding the origins and evolution of nucleotide-based cofactors. The mode of interaction between these proteins and their nucleic acid substrates remains unclear, but it may represent an extended form of stereochemical interactions that have been proposed for the origins of the genetic code.Correspondence to: C.A. Ouzounis  相似文献   

13.
Muscle or heart fatty acid-binding protein is a low molecular weight protein that binds long-chain fatty acids in the cytosol of muscle tissues. The three-dimensional structure of the human, bovine and insect proteins are known, either via X-ray or NMR techniques. The folding of the protein closely resembles that of the other FABPs: ten anti-parallel beta-strands are arranged to form a clam shell, closed at one end by two alpha-helices. This arrangement allows the formation of an internal cavity where the fatty acid can be accommodated, protected and isolated from the external environment. The fatty acid in the protein interior is stabilized by electrostatic and hydrogen bond interactions of its carboxylic head with charged or polar residues of the protein and by interactions of its tail with hydrophobic residues. The three-dimensional structure of different fatty acid-protein complexes along with molecular dynamics simulations are now providing insight into the molecular details of the specificity of the ligand binding.  相似文献   

14.
Mutations in the Fused in sarcoma/Translated in liposarcoma gene (FUS/TLS, FUS) have been identified among patients with amyotrophic lateral sclerosis (ALS). FUS protein aggregation is a major pathological hallmark of FUS proteinopathy, a group of neurodegenerative diseases characterized by FUS-immunoreactive inclusion bodies. We prepared transgenic Drosophila expressing either the wild type (Wt) or ALS-mutant human FUS protein (hFUS) using the UAS-Gal4 system. When expressing Wt, R524S or P525L mutant FUS in photoreceptors, mushroom bodies (MBs) or motor neurons (MNs), transgenic flies show age-dependent progressive neural damages, including axonal loss in MB neurons, morphological changes and functional impairment in MNs. The transgenic flies expressing the hFUS gene recapitulate key features of FUS proteinopathy, representing the first stable animal model for this group of devastating diseases.  相似文献   

15.
16.
脂肪酸结合蛋白的研究进展   总被引:4,自引:0,他引:4  
脂脉酸结合蛋白(FABP)是一族小分子细胞内蛋白质,对长链脂肪酸有很高的亲和力,能把脂肪酸从细胞膜转运到细胞内利用位点,在长链脂肪酸的代谢中起重要作用。本文就脂肪酸结合蛋白的结构、功能及其对脂肪酸代谢调节方面的研究进行了综述,并阐述了猪脂肪酸结合蛋白基因地对肌内脂肪合成的影响。  相似文献   

17.
Summary Cardiac-type fatty acid-binding protein (cFABP) from human heart muscle of three individuals was isolated and characterized as pI 5.3-cFABP. The proteins were structurally analyzed by tryptic peptide mapping, application of plasma desorption time-of-flight mass spectrometry and amino acid sequencing. All three preparations of human heart FABP, having 132 amino acids, differed from the published sequence [Offner et al. Biochem J 251: 191–198, 1988] in position 104, where Leu is found instead of Lys, and in position 124, where Cys is found instead of Ser.  相似文献   

18.
We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP.  相似文献   

19.
在人乳头瘤病毒(human papillomavirus,HPV)次要衣壳蛋白L2的N端和C端,有大量带正电荷的氨基酸残基组成核定位信号(nuclear localization signal,NLS)。细胞的核结构域10(nuclear domain 10,ND10)是细胞周期和病毒生活周期的重要调节者。L2定位到ND10的过程不仅会受到早幼粒细胞白血病蛋白(promyleocytic leukaemia protein,PML)、死亡结构域相关蛋白(deathdomain-associated protein,Daxx)、Sp100核抗原(Sp100 nuclear antigen)等细胞蛋白的影响,也会与L1在ND10发生相互作用。在HPV感染和组装过程中,L2的核定位信号有着重要作用。  相似文献   

20.
Cellular retinoic acid-binding protein (CRABP) has been purified to homogeneity from human placenta by a series of procedures, including acetone powder extraction, gel filtration on Sephadex G-50, and ion-exchange chromatography on DEAE-cellulose and on SP-Sephadex. Cellular retinol-binding protein (CRBP) was isolated concurrently. CRABP was purified 75,400-fold, based on total soluble acetone powder extract of placenta. The protein is a single polypeptide chain with a molecular mass of 14,600 Da, estimated by sodium dodecyl sulfate (SDS) gel electrophoresis or gel filtration, and has an isoelectric point of 4.78 (apo-CRABP, 4.82). On analysis of absorption and fluorescence spectra, the protein was seen to exhibit an absorption peak at 350 nm, fluorescence excitation maxima at 350 and 370 nm, and a fluorescence emission maximum at 475 nm. Human CRABP was immunologically distinct from human CRBP and serum retinol-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号