首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
In neurons, specific mRNAs are transported in a translationally repressed manner along dendrites or axons by transport ribonucleic-protein complexes called RNA granules. ZBP1 is one RNA binding protein present in transport RNPs, where it transports and represses the translation of cotransported mRNAs, including β-actin mRNA. The release of β-actin mRNA from ZBP1 and its subsequent translation depends on the phosphorylation of ZBP1 by Src kinase, but little is known about how this process is regulated. Here we demonstrate that the ribosomal-associated protein RACK1, another substrate of Src, binds the β-actin mRNA/ZBP1 complex on ribosomes and contributes to the release of β-actin mRNA from ZBP1 and to its translation. We identify the Src binding and phosphorylation site Y246 on RACK1 as the critical site for the binding to the β-actin mRNA/ZBP1 complex. Based on these results we propose RACK1 as a ribosomal scaffold protein for specific mRNA-RBP complexes to tightly regulate the translation of specific mRNAs.  相似文献   

2.
3.
Through experimental and theoretical approaches, it has been shown that bovine β-lactoglobulin (βlg) uses its hydrophobic cavity or calyx as the primary binding site for hydrophobic molecules, whereas the existence of a second ligand binding site at the dimeric interface has only been structurally identified for vitamin D3 (VD3). This binding exists even in the thermally denatured state, suggesting the prevalence of this secondary site. Although crystallographic experiments have suggested that VD3 can bind to both monomeric and dimeric states without significant structural differences, theoretical and experimental reports have proposed some structural requirements. Thus, in this study, based on known experimental data, the dynamic interaction of VD3 with the monomeric or dimeric forms of βlg was investigated through a protocol combining blind docking and 2 microsecond molecular dynamics simulations coupled with binding free energy and per-residue binding free energy decomposition analyses using the Molecular Mechanics Generalized Born Surface Area approach. Binding free energy calculations allowed us to estimate the energetic differences of coupling VD3 at the calyx and the dimeric interface for the monomeric or dimeric state, revealing that the dimeric structure is required to form a stable complex with VD3 at the dimeric interface. This also has an important impact on the dimerization process, whereas although the monomeric state also forms a stable complex with VD3 at the dimeric interface, the incorporation of the entropy component contributed to producing a marginally favorable binding free energy. Finally, the per-residue decomposition analysis provided energetic information about the most relevant residues in stabilizing the different systems.  相似文献   

4.
Tony Hunter  James I. Garrels 《Cell》1977,12(3):767-781
The mRNAs for α-, β- and γ-actin have been characterized with respect to molecular weight and poly(A) content. Polyacrylamide gel electrophoresis under denaturing conditions shows that the mRNA for α-actin (muscle-specific actin) is approximately 4.6 × 105 daltons in size, and that the mRNAs for β- and γ-actin (nonmuscle actins) are much larger, approximately 6.6 × 105 daltons in size. We therefore calculate that the noncoding regions of the β- and γ-actin mRNAs contain about 800 nucleotides. This is in marked contrast to the noncoding regions of α-actin mRNA which contain only about 180 nucleotides. During electrophoresis in high-resolution nondenaturing gels, the β-actin mRNA migrates slightly slower than the γ-actin mRNA. This indicates either that β-actin mRNA is about 100 nucleotides longer than γ-actin mRNA, or that these mRNAs differ in secondary structure. Fractionation of actin mRNA on the basis of poly(A) content shows that a substantial portion of the β-actin mRNA, but very little of the α- or γ-actin mRNAs, fails to bind to oligo(dT)-cellulose. Much of this poly(A)-deficient β-actin mRNA, however, does bind to poly(U)-Sepharose, a substrate with higher affinity for short poly(A) sequences. This indicates that many of these β-actin mRNA molecules are polyadenylated, but that they have unusually short poly(A) tails. The finding that β- and γ-actins are translated from mRNAs of different electrophoretic mobility and different poly(A) content strongly suggests that these two closely related proteins are products of different genes.  相似文献   

5.
Decapping is a critical step in the conserved 5′-to-3′ mRNA decay pathway of eukaryotes. The hetero-octameric Lsm1-7–Pat1 complex is required for normal rates of decapping in this pathway. This complex also protects the mRNA 3′-ends from trimming in vivo. To elucidate the mechanism of decapping, we analyzed multiple lsm1 mutants, lsm1-6, lsm1-8, lsm1-9, and lsm1-14, all of which are defective in decapping and 3′-end protection but unaffected in Lsm1-7–Pat1 complex integrity. The RNA binding ability of the mutant complex was found to be almost completely lost in the lsm1-8 mutant but only partially impaired in the other mutants. Importantly, overproduction of the Lsm1-9p- or Lsm1-14p-containing (but not Lsm1-8p-containing) mutant complexes in wild-type cells led to a dominant inhibition of mRNA decay. Further, the mRNA 3′-end protection defect of lsm1-9 and lsm1-14 cells, but not the lsm1-8 cells, could be partly suppressed by overproduction of the corresponding mutant complexes in those cells. These results suggest the following: (1) Decapping requires both binding of the Lsm1-7–Pat1 complex to the mRNA and facilitation of the post-binding events, while binding per se is sufficient for 3′-end protection. (2) A major block exists at the post-binding steps in the lsm1-9 and lsm1-14 mutants and at the binding step in the lsm1-8 mutant. Consistent with these ideas, the lsm1-9, 14 allele generated by combining the mutations of lsm1-9 and lsm1-14 alleles had almost fully lost the RNA binding activity of the complex and behaved like the lsm1-8 mutant.  相似文献   

6.
7.
Alzheimer's disease, the most common cause of dementia in the elderly and characterized by the deposition and accumulation of plaques, is composed in part of β-amyloid (Aβ) peptides, loss of neurons, and the accumulation of neurofibrillary tangles. Here, we describe ponezumab, a humanized monoclonal antibody, and show how it binds specifically to the carboxyl (C)-terminus of Aβ40. Ponezumab can label Aβ that is deposited in brain parenchyma found in sections from Alzheimer's disease casualties and in transgenic mouse models that overexpress Aβ. Importantly, ponezumab does not label full-length, non-cleaved amyloid precursor protein on the cell surface. The C-terminal epitope of the soluble Aβ present in the circulation appears to be available for ponezumab binding because systemic administration of ponezumab greatly elevates plasma Aβ40 levels in a dose-dependent fashion after administration to a mouse model that overexpress human Aβ. Administration of ponezumab to transgenic mice also led to a dose-dependent reduction in hippocampal amyloid load. To further explore the nature of ponezumab binding to Aβ40, we determined the X-ray crystal structure of ponezumab in complex with Aβ40 and found that the Aβ40 carboxyl moiety makes extensive contacts with ponezumab. Furthermore, the structure-function analysis supported this critical requirement for carboxy group of AβV40 in the Aβ-ponezumab interaction. These findings provide novel structural insights into the in vivo conformation of the C-terminus of Aβ40 and the brain Aβ-lowering efficacy that we observed following administration of ponezumab in transgenic mouse models.  相似文献   

8.
Integrin functions are controlled by regulating their affinity for ligand, and by the efficient recycling of intact integrins through endosomes. Here we demonstrate that the Kindlin-binding site in the β1-integrin cytoplasmic domain serves as a molecular switch enabling the sequential binding of two FERM-domain-containing proteins in different cellular compartments. When β1 integrins are at the plasma membrane, Kindlins control ligand-binding affinity. However, when they are internalized, Kindlins dissociate from integrins and sorting nexin 17 (SNX17) is recruited to free β1-integrin tails in early endosomes to prevent β1-integrin degradation, leading to their recycling back to the cell surface. Our results identify SNX17 as a β1-integrin-tail-binding protein that interacts with the free Kindlin-binding site in endosomes to stabilize β1 integrins, resulting in their recycling to the cell surface where they can be reused.  相似文献   

9.
Chorea-acanthocytosis (ChAc) is an autosomal, recessive hereditary disease characterized by striatal neurodegeneration and acanthocytosis, and caused by loss of function mutations in the vacuolar protein sorting 13 homolog A (VPS13A) gene. VPS13A encodes chorein whose physiological function at the molecular level is poorly understood. In this study, we show that chorein interacts with β-adducin and β-actin. We first compare protein expression in human erythrocyte membranes using proteomic analysis. Protein levels of β-adducin isoform 1 and β-actin are markedly decreased in erythrocyte membranes from a ChAc patient. Subsequent co-immunoprecipitation (co-IP) and reverse co-IP assays using extracts from chorein-overexpressing human embryonic kidney 293 (HEK293) cells, shows that β-adducin (isoforms 1 and 2) and β-actin interact with chorein. Immunocytochemical analysis using chorein-overexpressing HEK293 cells demonstrates co-localization of chorein with β-adducin and β-actin. In addition, immunoreactivity of β-adducin isoform 1 is significantly decreased in the striatum of gene-targeted ChAc-model mice. Adducin and actin are membrane cytoskeletal proteins, involved in synaptic function. Expression of β-adducin is restricted to the brain and hematopoietic tissues, corresponding to the main pathological lesions of ChAc, and thereby implicating β-adducin and β-actin in ChAc pathogenesis.  相似文献   

10.
Mikl M  Vendra G  Kiebler MA 《EMBO reports》2011,12(10):1077-1084
Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and β-actin RNAs localize to dendrites in distinct RNPs, which contain--unexpectedly--very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity.  相似文献   

11.
12.
Summary The enzyme production and localization ofThielavia terrestris strains C464 and NRRL 8126 were compared to determine their optimum temperature and pH for cellulase activity. High levels of intracellular -glucosidase activity were detected in the former strain. The intracellular -glucosidase of both strains were more thermostable than the extracellular enzyme; the half life ofT.terrestris (C464) endoglucanase activity at 60°C was greater than 96 hrs.  相似文献   

13.
14.
Summary 125I-labelled sheep anti-rabbit -globulin antibodies were used to locate rabbit antibodies to smooth- and striated-muscle actomyosins at the surface of trypsin-dissociated embryonic chick cells. Statistical analysis of electron microscope autoradiographs revealed that the plasma membrane of these cells was significantly labelled with both antibodies. Further tests revealed that there were a significantly greater number of antigenic sites present on the cell surface for the gizzard smooth-muscle antibodies than for those against pectoralis striated-muscle actomyosin.It was further shown that both the rate and extent of binding of the 125Ilabelled smooth-muscle actomyosin antibodies to the cells were greater than for anti-striated-muscle -globulins. Binding of the former was reduced to a level similar to that of 125I-NIS conjugate by preincubation of the y-globulins with smooth-muscle heavy meromyosin, while a similar reduction was observed when anti-pectoralis actomyosin was treated with actin.It was concluded that actin- and myosin-like proteins must now be considered as integral components of the plasma membrane.The authors wish to thank Dr. W. Sinclair (Zoology) and Miss S. Lutkins (Statistics Department) for assistance with the statistical analysis and are grateful to Professor N. A. Mitchison (Zoology Department, University College London) for providing a control sample of 125I-labelled sheep anti-rabbit -globulin, Dr. D. Catty (Experimental Pathology Department, Birmingham University) for donating sheep anti-rabbit serum and Dr. U. Gröschel-Stewart (Zoologisches Institut der TH., Darmstadt, Federal Republic of Germany) for the rabbit anti-actomyosin antibodies. Miss B. Morris and Messrs. P. C. Lloyd, D. Williams and J. Meredith gave skilled technical assistanceThis investigation was supported by grants from Science Research Council, Cancer Research Campaign and Deutsche Forschungsgemeinschaft.  相似文献   

15.
Summary Two antisera, Y-10 and Y-18 were raised in rabbits against synthetic human -endorphin conjugated to bovine serum albumin and keyhole limpet haemocyanin respectively. Antiserum Y-10 has been shown by radioimmunoassay to be highly specific for human -endorphin with minimal or no cross-reactivity against other pituitary peptides whilst antiserum Y-18 crossreacted on an equimolar basis against -endorphin and -lipotropin. When used in the immunohistochemical procedure, both antisera specifically stained the corticotrophs in human anterior pituitary tissue. A similar effect was observed when antiserum Y-18 was applied to rat anterior pituitary tissue in the immunohistochemical procedure. Y-10 antiserum, on the other hand, stained not only rat corticotrophs but also somatotrophs. The somatotrophin staining could not be attributed to the enkephalins reported to be present in these cells.The non-specific -endorphin antiserum Y-18 was used to stain anterior pituitaries from dehydrated and adrenalectomized rats as well as rats of the Brattleboro strain. In tissues from the three experimental animals, cells that stained positively for -endorphin did not give a positive immunoreaction for ACTH and vice versa in some other sections. It is concluded that under the physiological conditions, formalin fixation of the tissue causes the proopiocortin molecule to be trapped in a conformation such that either ACTH or -endorphin-like determinants are available for reacting with the appropriate antiserum.This work was financed by the Medical Research Council of New Zealand, NIH Research Program Project Grant HD-12303 and by U.S.P.H.S. Grant NS-16304 from NIH. We thank Drs Guillemin, Bloom and Ling for samples of -endorphin and -endorphin antisera  相似文献   

16.
Cheever TR  Li B  Ervasti JM 《PloS one》2012,7(3):e32970
The local translation of β-actin is one mechanism proposed to regulate spatially-restricted actin polymerization crucial for nearly all aspects of neuronal development and function. However, the physiological significance of localized β-actin translation in neurons has not yet been demonstrated in vivo. To investigate the role of β-actin in the mammalian central nervous system (CNS), we characterized brain structure and function in a CNS-specific β-actin knock-out mouse (CNS-ActbKO). β-actin was rapidly ablated in the embryonic mouse brain, but total actin levels were maintained through upregulation of other actin isoforms during development. CNS-ActbKO mice exhibited partial perinatal lethality while survivors presented with surprisingly restricted histological abnormalities localized to the hippocampus and cerebellum. These tissue morphology defects correlated with profound hyperactivity as well as cognitive and maternal behavior impairments. Finally, we also identified localized defects in axonal crossing of the corpus callosum in CNS-ActbKO mice. These restricted defects occurred despite the fact that primary neurons lacking β-actin in culture were morphologically normal. Altogether, we identified novel roles for β-actin in promoting complex CNS tissue architecture while also demonstrating that distinct functions for the ubiquitously expressed β-actin are surprisingly restricted in vivo.  相似文献   

17.
18.
The distribution of beta(1)-adrenergic receptors in the liver of Fischer 344 (F344) rat has been examined by an immunohistochemical method. The study was carried out on formalin-fixed and paraffin-embedded livers from young adult, middle-aged, and old female and male F344 rats. An antibody specific for the beta(1)-adrenoreceptor subtype was used. A positive reaction was found in the liver parenchyma of female and male rats from all age groups. Within the liver lobule, a clear zonation is observed, with the beta(1)-adrenoreceptor positivity most evident in pericentral zone hepatocytes and a gradual fading of the immunostaining from pericentral to periportal zone hepatocytes, which may be completely negative. Immunoreactivity is localized on the cell membrane and on the membrane of peripheral cytoplasmic vesicles, and is mostly confined to the cell side facing vascular space. The intensity of immunostaining seems to be slightly higher in the 6- and 10-month-old female rats as compared to the matched male rats and to the senescent female rats. No age-related changes in the intensity of immunostaining are appreciable in male rats. However, no definite conclusion could be drawn about the existence of gender-related differences or age-related changes in the density of beta(1)-adrenoreceptors. A low density of beta1-adrenoreceptor was observed in the spontaneous preneoplastic lesions of the livers from senescent rats.  相似文献   

19.
20.
The voltage-gated sodium channel (VGSC) is a complex, which is composed of one pore-forming α subunit and at least one β subunit. Up to now, five β subunits are known: β1/β1A, β1B, β2, β3, and β4, encoded by four genes (SCN1BSCN4B). It is critical to have a deep understanding of the interaction between β1 and β3 subunits, two subunits which frequently appear in many diseases concurrently. In this study, we had screened out the new template of β1 subunit for homology modelling, which shares higher similarity to β3. Docking studies of the β1 and β3 homology model were conducted, and likely β1 and β3 binding loci were investigated. The results revealed that β1–β3 is more likely to form a di-polymer than β1–β1 based on molecular interaction analysis, including potential energy analysis, Van der Waals (VDW) energy analysis and electrostatic energy analysis, and in addition, consideration of the hydrogen bonds and hydrophobic contacts that are involved. Based on these analyses, the residues His122 and Lys140 of β1 and Glu 66, Asn 131, Asp 118, Glu 120, Glu133, Asn135, Ser 137 of β3 were predicted to play a functional role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号