首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
SMG-9 is a component of the NMD complex, a heterotetramer that also includes SMG-1 and SMG-8 in the complex. SMG-9 was also originally identified as a tyrosine-phosphorylated protein but the role of the phosphorylation is not yet known. In this study, we determined that IQGAP protein, an actin cytoskeleton modifier acts as a binding partner with SMG-9 and this binding is regulated by phosphorylation of SMG-9 at Tyr-41. SMG-9 is co-localized with IQGAP1 as a part of the process of actin enrichment in non-stimulated cells, but not in the EGF-stimulated cells. Furthermore, an increase in the ability of SMG-9 to bind to SMG-8 occurs in response to EGF stimulation. These results suggest that tyrosine phosphorylation of SMG-9 may play a role in the formation of the NMD complex in the cells stimulated by the growth factor.  相似文献   

3.
STARD9 is a largely uncharacterized mitotic kinesin and putative cancer target that is critical for regulating pericentriolar material cohesion during bipolar spindle assembly. To begin to understand the mechanisms regulating STARD9 function and their importance to cell division, we took a multidisciplinary approach to define the cis and trans factors that regulate the stability of the STARD9 motor domain. We show that, unlike the other ∼50 mammalian kinesins, STARD9 contains an insertion in loop 12 of its motor domain (MD). Working with the STARD9-MD, we show that it is phosphorylated in mitosis by mitotic kinases that include Plk1. These phosphorylation events are important for targeting a pool of STARD9-MD for ubiquitination by the SCFβ-TrCP ubiquitin ligase and proteasome-dependent degradation. Of interest, overexpression of nonphosphorylatable/nondegradable STARD9-MD mutants leads to spindle assembly defects. Our results with STARD9-MD imply that in vivo the protein levels of full-length STARD9 could be regulated by Plk1 and SCFβ-TrCP to promote proper mitotic spindle assembly.  相似文献   

4.
Our previous studies on the transmembrane domain of human integrin subunits have shown that a conserved basic amino acid in both subunits of integrin heterodimers is positioned in the plasma membrane in the absence of interacting proteins. To investigate the possible functional role of the lipid-embedded lysine in the mouse integrin beta1 subunit, this amino acid was replaced with leucine, and the mutated beta1 subunit (beta1A(K756L)) was stably expressed in beta1-deficient GD25 cells. The extracellular domain of beta1A(K756L) integrins possesses a competent conformation for ligand binding as determined by the ability to mediate cell adhesion, and by the presence of the monoclonal antibody 9EG7 epitope. However, the spreading of GD25-beta1A(K756L) cells on fibronectin and laminin-1 was impaired, and the rate of migration of GD25-beta1A(K756L) cells on fibronectin was reduced compared with GD25-beta1A cells. Phosphorylation of tyrosines in focal adhesion kinase (FAK) and the Y416 in c-Src in response to beta1A(K756L)-mediated adhesion was similar to that induced by wild-type beta1. The tyrosine phosphorylation level of paxillin, a downstream target of FAK/Src, was unaffected by the beta1 mutation, whereas tyrosine phosphorylation of CAS was strongly reduced. The results demonstrate that CAS is a target for phosphorylation both by FAK-dependent and -independent pathways after integrin ligation. The latter pathway was inhibited by wortmannin and LY294002, implicating that it required an active phosphatidylinositol 3-kinase. Furthermore, the K756L mutation in the beta1 subunit was found to interfere with beta1-induced activation of Akt. The results from this study identify phosphatidylinositol 3-kinase as an early component of a FAK-independent integrin signaling pathway triggered by the membrane proximal part of the beta1 subunit.  相似文献   

5.
《Autophagy》2013,9(8):1197-1214
Autophagy is activated in response to a variety of cellular stresses including metabolic stress. While elegant genetic studies in yeast have identified the core autophagy machinery, the signaling pathways that regulate this process are less understood. AMPK is an energy sensing kinase and several studies have suggested that AMPK is required for autophagy. The biochemical connections between AMPK and autophagy, however, have not been elucidated. In this report, we identify a biochemical connection between a critical regulator of autophagy, ULK1, and the energy sensing kinase, AMPK. ULK1 forms a complex with AMPK, and AMPK activation results in ULK1 phosphorylation. Moreover, we demonstrate that the immediate effect of AMPK-dependent phosphorylation of ULK1 results in enhanced binding of the adaptor protein YWHAZ/14-3-3ζ; and this binding alters ULK1 phosphorylation in vitro. Finally, we provide evidence that both AMPK and ULK1 regulate localization of a critical component of the phagophore, ATG9, and that some of the AMPK phosphorylation sites on ULK1 are important for regulating ATG9 localization. Taken together these data identify an ULK1-AMPK signaling cassette involved in regulation of the autophagy machinery.  相似文献   

6.
7.
The PKD1-encoded protein, "polycystin-1", has a large N-terminal extracellular portion, multiple transmembrane domains, and a short intracellular C-terminal tail with four tyrosine residues and two putative sites for serine phosphorylation. Its function in kidney development and autosomal dominant polycystic kidney disease (ADPKD) is still unknown. We have subcloned the cDNA encoding the polycystin-1 C-terminal domain (PKD1-CTD) into a prokaryotic expression vector, and site-directed mutagenesis was performed to target the four tyrosine residues and four serine residues in two putative phosphorylation sites. In vitro phosphorylation assays were conducted on both wild type and mutant PKD1-CTD fusion proteins. It was found that the wild type PKD1-CTD and all mutant fusion proteins, except S4251G/S4252G, could be phosphorylated by lysates from cultured normal human renal collecting tubule (NHCT) cells, as well as by commercially purified cAMP-dependent protein kinase (PKA). The phosphorylation of the PKD1-CTD fusion protein by NHCT lysates was greatly enhanced by cAMP and its analog 8-Br-cAMP, and inhibited by the specific PKA inhibitors PKI(6-22) and H-89. Activators and inhibitors of protein kinase C (PKC) had no effects on the phosphorylation of the PKD1-CTD fusion protein. Using commercially purified pp60(c-src) (c-src) it was also shown that the PKD1-CTD fusion protein could be phosphorylated by c-src in vitro, and that this phosphorylation could be abolished by a mutation Y4237F. By comparing the amino acid sequence at 4249-4253 (RRSSR) with the consensus sequence for PKA phosphorylation (RRXSX), we suggest that the serine residue at 4252 is the target of phosphorylation by a cAMP-dependent protein kinase in NHCT cell lysates. In addition, we suggest that Y4237 might be phosphorylated by c-src in living cells.  相似文献   

8.
Disabled-1 (Dab1) plays a key role in reelin-mediated neuronal migration during brain development. Tyrosine phosphorylation of Dab1 at two YQXI and two YXVP motifs recruits multiple SH2 domains, resulting in activation of a wide range of signaling cascades. However, the molecular mechanisms underlying the coordinated regulation of Dab1 downstream effectors remain poorly understood. Here, we show that alternative splicing results in inclusion of different combinations of YQXI and YXVP motifs in Dab1 isoforms during development. Dab1 variants with partial or complete loss of YQXI motifs are preferentially expressed at early developmental stages, whereas the commonly studied Dab1 is predominantly expressed at late developmental stages. Expression of Dab1 variants in 293T and Neuro2a cells reveals reduced levels or absence of tyrosine phosphorylation in variants that have lost one or both YQXI motifs. We further demonstrate that Dab1 variants differ in their abilities to activate Src and recruit distinct SH2 domains involved in specific downstream signaling pathways. We propose that coordinated expression of specific Dab1 isoforms in different populations of cells in the developing brain contributes to precise neuronal migration by modulating the activity of subsets of Dab1 downstream effectors.  相似文献   

9.
CK2 is a Ser/Thr protein kinase that regulates the activity of the Drosophila basic-helix-loop-helix (bHLH) repressor M8 encoded by the Enhancer of split Complex (E(spl)C) during neurogenesis. Specifically, phosphorylation appears to elicit a conformational change in an autoinhibited state of M8 to one that is permissive for repression. We describe biochemical and molecular modeling studies that provide new insights into repression by M8. Our studies implicate the phosphorylation domain in autoinhibition, and indicate that binding of the co-repressor Groucho (Gro) is context-dependent. Molecular modeling indicates that the Orange domain, proposed to be a specificity-determinant, may instead play a structural role, and that a conformational rearrangement of this domain may be necessary for repression. This model also provides a structural mechanism for the behavior of mutant alleles of the m8 gene. The insights gained from these studies should be applicable to the conserved metazoan bHLH repressors of the Hairy and Enhancer of Split (HES) family that are related to Drosophila M8.  相似文献   

10.
11.
Repellents evoke growth cone turning by eliciting asymmetric, localized loss of actin cytoskeleton together with changes in substratum attachment. We have demonstrated that semaphorin-3A (Sema3A)-induced growth cone detachment and collapse require eicosanoid-mediated activation of protein kinase C epsilon (PKC epsilon) and that the major PKC epsilon target is the myristoylated, alanine-rich C-kinase substrate (MARCKS). Here, we show that PKC activation is necessary for growth cone turning and that MARCKS, while at the membrane, colocalizes with alpha3-integrin in a peripheral adhesive zone of the growth cone. Phosphorylation of MARCKS causes its translocation from the membrane to the cytosol. Silencing MARCKS expression dramatically reduces growth cone spread, whereas overexpression of wild-type MARCKS inhibits growth cone collapse triggered by PKC activation. Expression of phosphorylation-deficient, mutant MARCKS greatly expands growth cone adhesion, and this is characterized by extensive colocalization of MARCKS and alpha3-integrin, resistance to eicosanoid-triggered detachment and collapse, and reversal of Sema3A-induced repulsion into attraction. We conclude that MARCKS is involved in regulating growth cone adhesion as follows: its nonphosphorylated form stabilizes integrin-mediated adhesions, and its phosphorylation-triggered release from adhesions causes localized growth cone detachment critical for turning and collapse.  相似文献   

12.
The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L. A PDK-2 consensus phosphorylation site in ORP9L and OPR9S at S287 (VPEFS(287)Y) was confirmed by site-directed mutagenesis. In contrast to Akt, increased phosphorylation of ORP9S S287 in stimulated mast cells was independent of phosphatidylinositol 3-kinase but sensitive to inhibition of conventional PKC isotypes. PKC-beta dependence was confirmed by lack of ORP9S phosphorylation at S287 in PKC-beta-deficient, but not PKC-alpha-deficient, mast cells. Moreover, co-immunoprecipitation of PKC-beta and ORP9S, and in vitro phosphorylation of ORP9S in this complex, argued for direct phosphorylation of ORP9S by PKC-beta, introducing ORP9S as a novel PKC-beta substrate. Akt was also detected in a PKC-beta/ORP9S immune complex and phosphorylation of Akt on S473 was delayed in PKC-deficient mast cells. In HEK293 cells, RNAi experiments showed that depletion of ORP9L increased Akt S473 phosphorylation 3-fold without affecting T308 phosphorylation in the activation loop. Furthermore, mammalian target of rapamycin was implicated in ORP9L phosphorylation in HEK293 cells. These studies identify ORP9 as a PDK-2 substrate and negative regulator of Akt phosphorylation at the PDK-2 site.  相似文献   

13.
Multivesicular endosomes (MVBs) are major sorting platforms for membrane proteins and participate in plasma membrane protein turnover, vacuolar/lysosomal hydrolase delivery, and surface receptor signal attenuation. MVBs undergo unconventional inward budding, which results in the formation of intraluminal vesicles (ILVs). MVB cargo sorting and ILV formation are achieved by the concerted function of endosomal sorting complex required for transport (ESCRT)-0 to ESCRT-III. The ESCRT-0 subunit Vps27 is a key player in this pathway since it recruits the other complexes to endosomes. Here we show that the Pkh1/Phk2 kinases, two yeast orthologues of the 3-phosphoinositide–dependent kinase, phosphorylate directly Vps27 in vivo and in vitro. We identify the phosphorylation site as the serine 613 and demonstrate that this phosphorylation is required for proper Vps27 function. Indeed, in pkh-ts temperature-sensitive mutant cells and in cells expressing vps27S613A, MVB sorting of the carboxypeptidase Cps1 and of the α-factor receptor Ste2 is affected and the Vps28–green fluorescent protein ESCRT-I subunit is mainly cytoplasmic. We propose that Vps27 phosphorylation by Pkh1/2 kinases regulates the coordinated cascade of ESCRT complex recruitment at the endosomal membrane.  相似文献   

14.
Crk-associated substrate (CAS) is a tyrosine kinase substrate implicated in integrin control of cell behavior. Phosphorylation, by Src family kinases, of multiple tyrosine residues in the CAS substrate domain (SD) is a major integrin signaling event that promotes cell motility. In this study, novel phosphospecific antibodies directed against CAS SD phosphotyrosine sites ("pCAS" antibodies) were characterized and employed to investigate the cellular regulation and localization of CAS SD tyrosine phosphorylation. An analysis of CAS and focal adhesion kinase (FAK) variants expressed in CAS- and FAK-deficient cell lines, respectively, indicated that CAS SD tyrosine phosphorylation is substantially achieved by Src family kinases brought into association with CAS through two distinct mechanisms: direct binding to the CAS Src-binding domain and indirect association through a FAK bridge. Cell immunostaining with pCAS antibodies revealed that CAS SD tyrosine phosphorylation occurs exclusively at sites of integrin adhesion including both nascent focal complexes formed at the edges of extending lamellipodia as well as mature focal adhesions underlying the cell body. These findings further document a role for FAK as an important upstream regulator of CAS SD tyrosine phosphorylation and implicate CAS-mediated signaling events in promoting membrane protrusion/lamellipodium extension during cell motility.  相似文献   

15.
16.
Jacinto E  Facchinetti V  Liu D  Soto N  Wei S  Jung SY  Huang Q  Qin J  Su B 《Cell》2006,127(1):125-137
Mammalian target of rapamycin (mTOR) controls cell growth and proliferation via the raptor-mTOR (TORC1) and rictor-mTOR (TORC2) protein complexes. Recent biochemical studies suggested that TORC2 is the elusive PDK2 for Akt/PKB Ser473 phosphorylation in the hydrophobic motif. Phosphorylation at Ser473, along with Thr308 of its activation loop, is deemed necessary for Akt function, although the regulatory mechanisms and physiological importance of each phosphorylation site remain to be fully understood. Here, we report that SIN1/MIP1 is an essential TORC2/PDK2 subunit. Genetic ablation of sin1 abolished Akt-Ser473 phosphorylation and disrupted rictor-mTOR interaction but maintained Thr308 phosphorylation. Surprisingly, defective Ser473 phosphorylation affected only a subset of Akt targets in vivo, including FoxO1/3a, while other Akt targets, TSC2 and GSK3, and the TORC1 effectors, S6K and 4E-BP1, were unaffected. Our findings reveal that the SIN1-rictor-mTOR function in Akt-Ser473 phosphorylation is required for TORC2 function in cell survival but is dispensable for TORC1 function.  相似文献   

17.
The expression of GABA(A) receptors and the efficacy of GABAergic neurotransmission are subject to adaptive compensatory regulation as a result of changes in neuronal activity. Here, we show that activation of L-type voltage-gated Ca(2+) channels (VGCCs) leads to Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of S383 within the β3 subunit of the GABA(A) receptor. Consequently, this results in rapid insertion of GABA(A) receptors at the cell surface and enhanced tonic current. Furthermore, we demonstrate that acute changes in neuronal activity leads to the rapid modulation of cell surface numbers of GABA(A) receptors and tonic current, which are critically dependent on Ca(2+) influx through L-type VGCCs and CaMKII phosphorylation of β3S383. These data provide a mechanistic link between activity-dependent changes in Ca(2+) influx through L-type channels and the rapid modulation of GABA(A) receptor cell surface numbers and tonic current, suggesting a homeostatic pathway involved in regulating neuronal intrinsic excitability in response to changes in activity.  相似文献   

18.
19.
p62, also known as SQSTM1, is a multi-domain signalling scaffold protein involved in numerous critical cellular functions such as autophagy, apoptosis and inflammation. Crucial interactions relevant to these functions are mediated by the N-terminal Phox and Bem1p (PB1) domain, which is divided into two interaction surfaces, one of predominantly acidic and one of basic character. Most known interaction partners, including atypical protein kinase C (aPKC), bind to the basic surface, and acidic–basic interactions at this interface also allow for p62 homopolymerisation. We identify here that the coupling of p62 to the cAMP signalling system is conferred by both the direct binding of cAMP degrading phosphodiesterase-4 (PDE4) to the acidic surface of the p62 PB1 domain and the phosphorylation of the basic surface of this domain by cAMP-dependent protein kinase (PKA). Such phosphorylation is a previously unknown means of regulating PB1 domain interaction partnerships by disrupting the interaction of p62 with basic surface binding partners, such as aPKCs, as well as p62 homopolymerisation. Thus, we uncover a new regulatory mechanism that connects cAMP signalling with the p62 multi-domain signalling scaffold and autophagy cargo receptor protein.  相似文献   

20.
The C-terminal phosphorylation domain of the epidermal growth factor receptor is believed to regulate protein kinase activity as well as mediate the assembly of signal transduction complexes. The structure and dynamics of this proposed autoregulatory domain were examined by labeling the extreme C terminus of the EGFR intracellular domain (ICD) with an extrinsic fluorophore. Fluorescence anisotropy decay analysis of the nonphosphorylated EGFR-ICD yielded two rotational correlation times: a longer time, consistent with the global rotational motion of a 60- to 70-kDa protein with an elongated globular conformation, and a shorter time, presumably contributed by segmental motion near the fluorophore. A C-terminally truncated form of EGFR-ICD yielded a slow component consistent with the rotational motion of the 38-kDa kinase core. These findings suggested a structural arrangement of the EGFR-ICD in which the C-terminal phosphorylation domain interacts with the kinase core to move as an extended structure. A marked reduction in the larger correlation time of EGFR-ICD was observed upon its autophosphorylation. This dynamic component was faster than predicted for the globular motion of the 62-kDa EGFR-ICD, suggesting an increase in the mobility of the C-terminal domain and a likely displacement of this domain from the kinase core. The interaction between the SH2 domain of c-Src and the phosphorylated EGFR C-terminal domain was shown to impede its mobility. Circular dichroism spectroscopy indicated that the EGFR C-terminal domain possessed a significant level of secondary structure in the form of alpha-helices and beta-sheets, with a marginal change in beta-sheet content occurring upon phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号