首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
富含鸟嘌呤的DNA序列在金属离子(通常是钠、钾离子)存在的条件下,可以形成稳定的G-四链体(G-quadruplex)。该G 四链体能够结合hemin(氯高铁血红素)形成具有过氧化物酶的活性的G四链体-hemin复合物DNAzyme。将这一原理联合滚环扩增技术可以对核酸进行可视化的检测。本研究旨在探索G-四链体-hemin复合物中,G-四链体结构以及两个G-四链体之间的链接长度与DNAzyme过氧化物酶活性之间的关系。实验分别选取了平行、反平行和混合结构的G-四链体,通过热差异光谱、紫外光谱、圆二色光谱对结构进行分析,不断加长链接序列并测定3种结构形成的DNAzyme活性,发现正平行结构的G-四链体具有更高的DNAzyme活性和更明显的可视化效果。综上所述,平行G-四链体结构可以用来满足裸眼可视化检测的需求,为无需复杂仪器的核酸检测奠定了方法基础。  相似文献   

2.
Guanine-rich DNA sequences are widely dispersed in the eukaryotic genome and are abundant in regions with relevant biological significance. They can form quadruplex structures stabilized by guanine quartets. These structures differ for number and strand polarity, loop composition, and conformation. We report here the syntheses and the structural studies of a set of interconnected d(TG(4)T) fragments which are tethered, with different orientations, to a tetra-end-linker in an attempt to force the formation of specific four-stranded DNA quadruplex structures. Two synthetic strategies have been used to obtain oligodeoxyribonucleotide (ODN) strands linked with their 3'- or 5'-ends to each of the four arms of the linker. The first approach allowed the synthesis of tetra-end-linked ODN (TEL-ODN) containing the four ODN strands with a parallel orientation, while the latter synthetic pathway led to the synthesis of TEL-ODNs each containing antiparallel ODN pairs. The influence of the linker at 3'- or 5'-ODN, on the quadruplex typology and stability, in the presence of sodium or potassium ions, has been investigated by circular dichroism (CD), CD thermal denaturation, (1)H NMR experiments at variable temperature, and molecular modeling. All synthesized TEL-ODNs formed parallel G-quadruplex structures. Particularly, the TEL-ODN containing all parallel ODN tracts formed very stable parallel G-quadruplex complexes, whereas the TEL-ODNs containing antiparallel ODN pairs led to relatively less stable parallel G-quadruplexes. The molecular modeling data suggested that the above antiparallel TEL-ODNs can adopt parallel G-quadruplex structures thanks to a considerable folding of the tetra-end-linker around the whole quadruplex scaffold.  相似文献   

3.
We survey here state of the art mass spectrometry methodologies for investigating G-quadruplexes, and will illustrate them with a new study on a simple model system: the dimeric G-quadruplex of the 12-mer telomeric DNA sequence d(TAGGGTTAGGGT), which can adopt either a parallel or an antiparallel structure. We will discuss the solution conditions compatible with electrospray ionisation, the quantification of complexes using ESI-MS, the interpretation of ammonium ion preservation in the complexes in the gas phase, and the use of ion mobility spectrometry to resolve ambiguities regarding the strand stoichiometry, or separate and characterise different structural isomers. We also describe that adding electrospray-compatible organic co-solvents (methanol, ethanol, isopropanol or acetonitrile) to aqueous ammonium acetate increases the stability and rate of formation of dimeric G-quadruplexes, and causes structural transitions to parallel structures. Structural changes were probed by circular dichroism and ion mobility spectrometry, and the excellent correlation between the two techniques validates the use of ion mobility to investigate G-quadruplex folding. We also demonstrate that parallel G-quadruplex structures are easier to preserve in the gas phase than antiparallel structures.  相似文献   

4.
Recent experiments provided controversial observations that either parallel or non-parallel G-quadruplex exists in molecularly crowded buffers that mimic cellular environment. Here, we used laser tweezers to mechanically unfold structures in a human telomeric DNA fragment, 5′-(TTAGGG)4TTA, along three different trajectories. After the end-to-end distance of each unfolding geometry was measured, it was compared with PDB structures to identify the best-matching G-quadruplex conformation. This method is well-suited to identify biomolecular structures in complex settings not amenable to conventional approaches, such as in a solution with mixed species or at physiologically significant concentrations. With this approach, we found that parallel G-quadruplex coexists with non-parallel species (1:1 ratio) in crowded buffers with dehydrating cosolutes [40% w/v dimethyl sulfoxide (DMSO) or acetonitrile (ACN)]. In crowded solutions with steric cosolutes [40% w/v bovine serum albumin (BSA)], the parallel G-quadruplex constitutes only 10% of the population. This difference unequivocally supports the notion that dehydration promotes the formation of parallel G-quadruplexes. Compared with DNA hairpins that have decreased unfolding forces in crowded (9 pN) versus diluted (15 pN) buffers, those of G-quadruplexes remain the same (20 pN). Such a result implies that in a cellular environment, DNA G-quadruplexes, instead of hairpins, can stop DNA/RNA polymerases with stall forces often <20 pN.  相似文献   

5.
Recently, the two-repeat human telomeric d(TAGGGTTAGGGT) sequence has been shown to form interconverting parallel and antiparallel G-quadruplex structures in solution. Here, we examine the structures formed by the two-repeat Tetrahymena telomeric d(TGGGGTTGGGGT) sequence, which differs from the human sequence only by one G-for-A replacement in each repeat. We show by NMR that this sequence forms two novel G-quadruplex structures in Na+-containing solution. Both structures are asymmetric, dimeric G-quadruplexes involving a core of four stacked G-tetrads and two edgewise loops. The adjacent strands of the G-tetrad core are alternately parallel and antiparallel. All G-tetrads adopt syn.syn.anti.anti alignments, which occur with 5'-syn-anti-syn-anti-3' alternations along G-tracks. In the first structure (head-to-head), two loops are at one end of the G-tetrad core; in the second structure (head-to-tail), two loops are located on opposite ends of the G-tetrad core. In contrast to the human telomere counterpart, the proportions of the two forms here are similar for a wide range of temperatures; their unfolding rates are also similar, with an activation enthalpy of 153 kJ/mol.  相似文献   

6.
Single-stranded DNA overhangs at the ends of human telomeric repeats are capable of adopting four-stranded G-quadruplex structures, which could serve as potential anticancer targets. Out of the five reported intramolecular human telomeric G-quadruplex structures, four were formed in the presence of K+ ions and only one in the presence of Na+ ions, leading often to a perception that this structural polymorphism occurs exclusively in the presence of K+ but not Na+. Here we present the structure of a new antiparallel (2+2) G-quadruplex formed by a derivative of a 27-nt human telomeric sequence in Na+ solution, which comprises a novel core arrangement distinct from the known topologies. This structure complements the previously elucidated basket-type human telomeric G-quadruplex to serve as reference structures in Na+-containing environment. These structures, together with the coexistence of other conformations in Na+ solution as observed by nuclear magnetic resonance spectroscopy, establish the polymorphic nature of human telomeric repeats beyond the influence of K+ ions.  相似文献   

7.
Miyoshi D  Nakao A  Sugimoto N 《Biochemistry》2002,41(50):15017-15024
Almost all biochemical reactions in vitro have been investigated through numerous experiments conducted in dilute solutions containing low concentrations of solutes. However, biomacromolecules such as nucleic acids, proteins, and polysaccharides are designed to function and/or form their native structures in a living cell containing high concentrations of biomacromolecules, substrates, cofactors, salts, and so on. In the present study, we have demonstrated quantitatively the effect of molecular crowding on structures and stabilities of the G-quadruplex of d(G(4)T(4)G(4)). Molecular crowding with poly(ethylene glycol) (PEG) induced a structural transition from the antiparallel to the parallel G-quadruplex of d(G(4)T(4)G(4)), while molecular crowding with polycations did not alter the structure of the antiparallel G-quadruplex. The binding constants of putrescine, one of the polycations, for d(G(4)T(4)G(4)) in the absence and presence of Na(+) are calculated to be 277 and 2.5 M(-)(1), respectively. This indicates that the polycations coordinate to d(G(4)T(4)G(4)) with electrostatic interactions. The thermodynamic parameters of the antiparallel G-quadruplex formation under the crowding and noncrowding conditions induced by putrescine were also estimated. The stability of the antiparallel G-quadruplex decreased (-DeltaG degrees (25) decreased from 28 to 22 kcal mol(-)(1)) with molecular crowding by putrescine. Also, enthalpy and entropy changes in the structural formation under crowding and noncrowding conditions clearly showed that destabilization was entropy-driven. These quantitative parameters indicated that both the volume excluded by PEG and chemical interactions such as electrostatic interaction with solute polycations are critical for determining how molecular crowding affects the structure and stability of highly ordered DNA structures.  相似文献   

8.
The human telomeric sequence d[AGGG(TTAGGG)(3)] has been found to form different types of G-quadruplex structures. NMR revealed that in Na(+) solution this 22 nucleotide (nt) sequence exhibits an antiparallel structure, whereas crystallographic studies in the presence of K(+) showed a dramatically different parallel structure. The structure of this 22 nt sequence in the presence of K(+) has drawn intense interest as the intracellular K(+) concentration is greater than that of Na(+). However, the question of the type of structure for the 22 nt telomeric sequence in K(+) solution remains open. In this study, we substituted the Gs in the sequence with 8-bromoguanine and examined the resultant structures and thermal stabilities by circular dichroism (CD) spectroscopy. The results suggest that the 22 nt in K(+) solution exists as a mixture of mixed-parallel/antiparallel and chair-type G-quadruplex. To date, the exact structure of human telomeric G-quadruplex in K(+) solution is extremely controversial. The present study provides valuable information for understanding the discrepancies between the crystal and solution studies. We discuss the possible implications of the structure in understanding higher-order telomeric DNA structure and T-loop formation.  相似文献   

9.
Development of probes that can discriminate G-quadruplex (GQ) structures and indentify efficient GQ binders on the basis of topology and nucleic acid type is highly desired to advance GQ-directed therapeutic strategies. In this context, we describe the development of minimally perturbing and environment-sensitive pyrimidine nucleoside analogues, based on a 5-(benzofuran-2-yl)uracil core, as topology-specific fluorescence turn-on probes for human telomeric DNA and RNA GQs. The pyrimidine residues of one of the loop regions (TTA) of telomeric DNA and RNA GQ oligonucleotide (ON) sequences were replaced with 5-benzofuran-modified 2′-deoxyuridine and uridine analogues. Depending on the position of modification the fluorescent nucleoside analogues distinguish antiparallel, mixed parallel-antiparallel and parallel stranded DNA and RNA GQ topologies from corresponding duplexes with significant enhancement in fluorescence intensity and quantum yield. Further, these GQ sensors enabled the development of a simple fluorescence binding assay to quantify topology- and nucleic acid-specific binding of small molecule ligands to GQ structures. Together, our results demonstrate that these nucleoside analogues are useful GQ probes, which are anticipated to provide new opportunities to study and discover efficient G-quadruplex binders of therapeutic potential.  相似文献   

10.
Abstract

This study examined the influence of the molecular crowding condition induced by polyethylene glycol (PEG) on the G-quadruplex structure of the thrombin-binding aptamer sequence, 5′-GGGTTGGGTGTGGGTTGGG (G3), in a solution containing a sufficient concentration of mono cations (K+ and Na+). Although the G3 sequence preferably formed the antiparallel type G-quadruplex structure in a Na+ solution, conversion to the parallel type occurred when PEG was added. The antiparallel type was maintained at low PEG concentrations. When the PEG concentration reached 30%, the antiparallel type and parallel type coexist. At PEG concentrations above 40%, the G-quadruplex structure adopted the parallel type completely. In the presence of K+ ions, G3 showed a parallel conformation and remained as a parallel conformation with increasing PEG concentration. The dissociation temperature increased with increasing PEG concentration in all cases, suggesting that the G-quadruplex conformation is more stable under molecular crowding conditions.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
The resolution of the dimeric intermolecular G-quadruplex/duplex competition of the telomeric DNA sequence 5′-TAG GGT TAG GGT-3′ and of its complementary 5′ ACC CTA ACC CTA-3′ is reported. To achieve this goal, melting experiments of both sequences and of the mixtures of these sequences were monitored by molecular absorption, molecular fluorescence and circular dichroism spectroscopies. Molecular fluorescence measurements were carried out using molecular beacons technology, in which the 5′-TAG GGT TAG GGT-3′ sequence was labelled with a fluorophore and a quencher at the ends of the strand. Mathematical analysis of experimental spectroscopic data was performed by means of multivariate curve resolution, allowing the calculation of concentration profiles and pure spectra of all resolved structures (dimeric antiparallel and parallel G-quadruplexes, Watson–Crick duplex and single strands) present in solution. Our results show that parallel G-quadruplex is more stable than antiparallel G-quadruplex. When the complementary C-rich strand is present, a mixture of both G-quadruplex structures and Watson–Crick duplex is observed, the duplex being the major species. In addition to melting temperatures, equilibrium constants for the parallel/antiparallel G-quadruplex equilibrium and for the G-quadruplex/duplex equilibrium were determined from the concentration profiles.  相似文献   

12.
Kaushik M  Bansal A  Saxena S  Kukreti S 《Biochemistry》2007,46(24):7119-7131
Under physiological concentrations of Na+ and K+, human telomeric DNA can self-associate into G-quadruplexes. On the basis of circular dichroism, gel electrophoresis, gel filtration, and UV-melting experiments, we report here that the double repeat of human telomere (d-TTAGGGTTAGGG; HUM2) forms parallel as well as antiparallel quadruplexes in the presence of K+, whereas Na+ facilitates only the antiparallel form. Here, the gel techniques and CD studies have proved to be complementary in detecting the molecularity and pattern of strand orientation. By correlating the gel and CD experiments, the antiparallel G-quadruplex was identified as a tetrameric species, whereas the parallel G-quadruplex was found to be dimeric. Both structural species were separated through gel filtration, which when run on native polyacrylamide gel electrphoresis (PAGE), confirmed their molecularity. UV-melting profiles also confirm the presence of two biphasic and one monophasic structural species in the presence of K+ and Na+, respectively. Though our observation is consistent with the recent NMR report (Phan, A. T., and Patel, D. J. (2003) J. Am. Chem. Soc. 125, 15021-15027), it seems to differ in terms of the molecularity of the antiparallel quadruplex. A model is proposed for an antiparallel tetrameric quadruplex, showing the possibility of Watson-Crick hydrogen bonds between intervening bases on antiparallel strands. This article expands the known structural motifs of DNA quadruplexes. To the best of our knowledge, four-stranded antiparallel quadruplexes have not been characterized to date. On the basis of the model, we hypothesize a possible mechanism for telomere-telomere association involving their G-overhangs, during certain stages of the cell cycle. The knowledge of peculiar geometries of the G-quadruplexes may also have implications for its specific recognition by ligands.  相似文献   

13.
Accelerated assembly of G-quadruplex structures by a small molecule.   总被引:9,自引:0,他引:9  
H Han  C L Cliff  L H Hurley 《Biochemistry》1999,38(22):6981-6986
In the presence of alkali cations, notably potassium and sodium, DNA oligomers that possess two G-rich repeats associate into either a tetrameric parallel G-quadruplex or a variety of dimeric antiparallel G-quadruplexes. The formation of such structures is normally a very slow process. Some proteins, such as the beta-subunit of the Oxytricha telomere-binding protein, promote the formation of G-quadruplex structures in a chaperone-like manner. In this report, we present data concerning the role of a perylene derivative, PIPER, in the assembly of G-quadruplex structures as the first example of a small ligand behaving as a driver in the assembly of polynucleotide secondary structures. Gel-shift experiments demonstrate that PIPER can dramatically accelerate the association of a DNA oligomer containing two tandem repeats of the human telomeric sequence (TTAGGG) into di- and tetrameric G-quadruplexes. In so doing, PIPER alters the oligomer dimerization kinetics from second to first order. The presence of 10 microM PIPER accelerates the assembly of varied dimeric G-quadruplexes an estimated 100-fold from 2 microM oligomer. These results imply that some biological effects elicited by G-quadruplex-interactive agents, such as the induction of anaphase bridges, may stem from the propensity such compounds have for assembling G-quadruplexes.  相似文献   

14.
We have determined solution structure of r(GGAGGUUUUGGAGG) (R14) by NMR; the RNA 14-mer forms an intra-strand parallel quadruplex with a G-tetrad and a hexad, in which a G-tetrad core is augmented by association of two A residues. The quadruplex further forms a dimer through stacking interaction between the hexads. In order to obtain insight into the difference between RNA and DNA quadruplexes, we synthesized the corresponding DNA 14-mer, d(GGAGGTTTTGGAGG) (D14), and examined its properties and structure by CD, gel electrophoresis, and NMR. K+ ions increased the thermal stability of both R14 and D14 structures. The binding affinity of K+ ions to R14 was much higher than that to D14. The CD and gel electrophoretic studies suggest that D14 forms a quadruplex entirely different from that of R14 in the presence of K+ ions; two molecules of D14 form a quadruplex with both antiparallel and parallel strand alignments and with diagonal loops at both ends of the stacked G-tetrads. The NMR study also gave results that are consistent with such structure: alternate glycosidic conformation, 5'G(syn)-G(anti)3', and characteristic chemical shift data observed for many quadruplexes containing diagonal TTTT loops.  相似文献   

15.
We study the unfolding of a parallel G-quadruplex from human telomeric DNA by mechanical stretching using steered molecular dynamics (MD) simulation. We find that the force curves and unfolding processes strongly depend on the pulling sites. With pulling sites located on the sugar-phosphate backbone, the force-extension curve shows a single peak and the unfolding proceeds sequentially. Pulling sites located on the terminal nucleobases lead to a force-extension curve with two peaks and the unfolding is more cooperative. Simulations of the refolding of partially unfolded quadruplexes show very different behavior for the two different pulling modalities. In particular, starting from an unfolded state prepared by nucleobase pulling leads to a long-lived intermediate state whose existence is also corroborated by the free energy profile computed with the Jarzynski equation. Based on this observation, we propose a novel folding pathway for parallel G-quadruplexes with the human telomere sequence.  相似文献   

16.
A prolonged expansion of GGGGCC repeat within non-coding region of C9orf72 gene has been identified as the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which are devastating neurodegenerative disorders. Formation of unusual secondary structures within expanded GGGGCC repeat, including DNA and RNA G-quadruplexes and R-loops was proposed to drive ALS and FTD pathogenesis. Initial NMR investigation on DNA oligonucleotides with four repeat units as the shortest model with the ability to form an unimolecular G-quadruplex indicated their folding into multiple G-quadruplex structures in the presence of K+ ions. Single dG to 8Br-dG substitution at position 21 in oligonucleotide d[(G4C2)3G4] and careful optimization of folding conditions enabled formation of mostly a single G-quadruplex species, which enabled determination of a high-resolution structure with NMR. G-quadruplex structure adopted by d[(G4C2)3GGBrGG] is composed of four G-quartets, which are connected by three edgewise C-C loops. All four strands adopt antiparallel orientation to one another and have alternating syn-anti progression of glycosidic conformation of guanine residues. One of the cytosines in every loop is stacked upon the G-quartet contributing to a very compact and stable structure.  相似文献   

17.
18.
Lee JY  Yoon J  Kihm HW  Kim DS 《Biochemistry》2008,47(11):3389-3396
Oxytricha nova telomeric DNA contains guanine-rich short-tandem repeat sequences (GGGGTTTT) n and terminates as a single strand at the 3'-end. This single-stranded overhang forms a novel DNA structure, namely, G-quadruplex, comprising four quartets. In this study, we investigated the structures and dynamics of unimolecular Oxytricha nova ( O. nova) telomeric G-quadruplexes by performing single molecule fluorescence resonance energy transfer (FRET) spectroscopy and bulk circular dichroism (CD) measurements. We observed that unimolecular O. nova G-quadruplexes exhibit structural polymorphism according to monovalent cations. In the presence of Na (+), only antiparallel conformation is detected, which was demonstrated in previous studies; however, in the presence of K (+), they fold into two different conformations, a parallel conformation and an antiparallel one different from that induced by Na (+). Furthermore, these G-quadruplexes show extremely high stability in their dynamics when compared with human G-quadruplexes. While human telomeric G-quadruplexes that possess three quartets display fast dynamic behavior (<100 s) at low K (+) concentrations or high temperatures, O. nova G-quadruplexes maintain their conformational state for a long time (>1000 s), even at the lowest K (+) concentration and the highest temperature investigated. This high stability is primarily due to an extra quartet that results in additional cation coordination. In addition to cation coordination, we propose that other factors such as base stacking and the size of the thymine loop may contribute to the stability of O. nova G-quadruplexes; this is based on the fact that the O. nova G-quadruplexes were observed to be more stable than the human ones in the presence of Li (+), which is known to greatly destabilize G-quadruplexes because of imprecise coordination. This extreme stability of four-quartet G-quadruplexes enables telomere protection even in the absence of protective proteins or in the case of abrupt environmental changes, although only a single G-quadruplex structure can be derived from the short single-stranded overhang.  相似文献   

19.
The sequence of human telomeric DNA consists of tandem repeats of 5′-d(TTAGGG)-3′. This guanine-rich DNA can form G-quadruplex secondary structures which may affect telomere maintenance. A current model for telomere protection by the telomere-binding protein, TRF2, involves the formation of a t-loop which is stabilized by a strand invasion-like reaction. This type of reaction may be affected by G-quadruplex structures. We analyzed the influence of the arginine-rich, TRF2 N-terminus (TRF2B), as well as this region plus the TRFH domain of TRF2 (TRF2BH), on the structure of G-quadruplexes. Circular dichroism results suggest that oligonucleotides with 4, 7 and 8 5′-d(TTAGGG)-3′ repeats form hybrid structures, a mix of parallel/antiparallel strand orientation, in K+. TRF2B stimulated the formation of parallel-stranded structures and, in some cases, intermolecular structures. TRF2BH also stimulated intermolecular but not parallel-stranded structures. Only full-length TRF2 and TRF2BH stimulated uptake of a telomeric single-stranded oligonucleotide into a plasmid containing telomeric DNA in the presence of K+. The results in this study suggest that G-quadruplex formation inhibits oligonucleotide uptake into the plasmid, but the inhibition can be overcome by TRF2. This study is the first analysis of the effects of TRF2 domains on G-quadruplex structures and has implications for the role of G-quadruplexes and TRF2 in the formation of t-loops.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号