首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitogen-activated protein (MAP) kinase pathway is a critical regulator of cell growth, migration, and differentiation. Growth factor activation of MAP kinase in NIH 3T3 cells is strongly dependent upon integrin-mediated adhesion, an effect that contributes to the anchorage dependence of normal cell growth. We now show that expression of constructs that constitutively activate focal adhesion kinase (FAK) rescued the defect in serum activation of MAP kinase in suspended cells without directly activating MAP kinase. Dominant negative FAK blocked both the rescue of suspended cells by the activated construct and the serum activation of MAP kinase in adherent cells. MAP kinase in FAK(-/)- mouse embryo fibroblasts was adhesion-insensitive, and reexpression of FAK restored its adhesion dependence. MAP kinase activity in ras-transformed cells is still decreased in suspension, but expression of constructs that constitutively activate FAK enhanced their anchorage-independent growth without increasing adherent growth. V-src, which activates both Ras and FAK, induced MAP kinase activation that was insensitive to loss of adhesion, and that was blocked by a dominant negative FAK. These results demonstrate that FAK mediates the integrin requirement for serum activation of MAP kinase in normal cells, and that bypassing this mechanism contributes to anchorage-independent growth in transformed cells.  相似文献   

2.
The Chinese hamster lung fibroblast cell line (CC139) has high anchorage dependence for growth and has retained the high serum dependence of secondary cultures of adult fibroblasts. This cell line is tumorigenic in nude mice; however, the resulting tumor cells have different properties than those of the cell line injected. The tumor-derived cells had strongly reduced or even lost both the high anchorage and the high serum dependence of CC139 cells. This finding suggests that an in vivo selection is necessary for CC139 cells to acquire the malignant phenotype. After mutagenesis, which increases the frequency of CC139 colony formation in agarose up to 8-fold, we selected and analyzed 15 anchorage-independent colonies. No correlation between the colony-forming ability in agarose and serum-growth factor requirement for DNA synthesis was observed. Each of these clones were injected into nude mice and the growth factor dependence of the ensuing tumor cells was compared to that of corresponding injected cells. All of the anchorage-independent colonies with the exception of one (A71), had acquired in vivo a stable phenotype allowing for partial or total escape of growth factor requirement. A71, the only clone which maintained the same growth factor requirement after two passages in vivo (A71 T1 and A71 T2) had already gained, in vitro, the minimal growth factor “relaxation” compatible with in vivo growth. A71 and A71 T1 tumor cells arrested in G0/G1 can reinitiate DNA synthesis in the presence of mouse plasma, low concentrations of serum, or thrombin. The fact that none of the tumors analyzed (more than 20) were found to have retained the high serum dependence of CC139 cells strongly suggests that the partial loss of serum growth factor requirement acquired in vivo is an essential malignant character for bypassing the hormonal growth restraints imposed by the host upon CC139 cells.  相似文献   

3.
Integrin-mediated Signaling Events in Human Endothelial Cells   总被引:7,自引:2,他引:5       下载免费PDF全文
Vascular endothelial cells are important in a variety of physiological and pathophysiological processes. The growth and functions of vascular endothelial cells are regulated both by soluble mitogenic and differentiation factors and by interactions with the extracellular matrix; however, relatively little is known about the role of the matrix. In the present study, we investigate whether integrin-mediated anchorage to a substratum coated with the extracellular matrix protein fibronectin regulates growth factor signaling events in human endothelial cells. We show that cell adhesion to fibronectin and growth factor stimulation trigger distinct initial tyrosine phosphorylation events in endothelial cells. Thus, integrin-dependent adhesion of endothelial cells leads to tyrosine phosphorylation of both focal adhesion kinase and paxillin, but not of several growth factor receptors. Conversely, EGF stimulation causes receptor autophosphorylation, with no effect on focal adhesion kinase or paxillin tyrosine phosphorylation. Adhesion to fibronectin, in the absence of growth factors, leads to activation of MAPK. In addition, adhesion to fibronectin also potentiates growth factor signaling to MAPK. Thus, polypeptide growth factor activation of MAPK in anchored cells is far more effective than in cells maintained in suspension. Other agonists known to activate MAPK were also examined for their ability to activate MAPK in an anchorage-dependent manner. The neuropeptide bombesin, the bioactive lipid lysophosphatidic acid (LPA), and the cytokine tumor necrosis factor α, which signal through diverse mechanisms, were all able to activate MAPK to a much greater degree in fibronectin-adherent cells than in suspended cells. In addition, tumor necrosis factor α activation of c-Jun kinase (JNK) was also much more robust in anchored cells. Together, these data suggest a cooperation between integrins and soluble mitogens in efficient propagation of signals to downstream kinases. This cooperation may contribute to anchorage dependence of mitogenic cell cycle progression.  相似文献   

4.
Bcr-Abl protein tyrosine kinase (PTK) activity is a feature of chronic myeloid leukaemia and confers a survival advantage on haemopoietic progenitor cells. We have expressed conditional mutant of the Bcr-Abl PTK in the FDCP-Mix A4 multipotent haematopoietic cell line in order to examine the molecular mechanisms whereby Bcr-Abl PTK leads to enhanced cell survival under conditions in which normal cells die. Activation of Bcr-Abl PTK does not phosphorylate or activate either ERK-1/2 or JAK-2/STAT-5b, suggesting that these signal transduction pathways are not involved in Abl PTK-mediated suppression of apoptosis in FDCP-Mix cells. However, protein kinase C (PKC) does have a role to play. Inhibition of PKC results in a reversal of Bcr-Abl PTK-mediated survival in the absence of growth factor and Bcr-Abl stimulates translocation of the PKCbetaII isoform to the nucleus. Furthermore, expression of a constitutively activated PKCbetaII in haemopoietic progenitor FDCP-Mix cells stimulates enhanced cell survival when IL-3 is withdrawn. However, expression of this constitutively activated PKC isoform does not suppress cytotoxic drug-induced apoptosis. Thus Bcr-Abl PTK has pleiotropic effects which can suppress cell death induced by a number of stimuli.  相似文献   

5.
6.
7.
In Philadelphia chromosome-positive human leukemias, the c-abl proto-oncogene on chromosome 9 becomes fused to the bcr gene on chromosome 22, and chimeric Bcr-Abl proteins are produced. The fused Bcr sequences activate the tyrosine kinase, actin-binding, and transforming functions of Abl. Activation of the Abl transforming function has been shown to require two distinct domains of Bcr: domain 1 (Bcr amino acids 1 to 63) and domain 2 (Bcr amino acids 176 to 242). The amino acid sequence of domain 1 indicates that it may be a coiled-coil oligomerization domain. We show here that domain 1 of Bcr forms a homotetramer. Tetramerization of Bcr-Abl through Bcr domain 1 correlates with activation of the tyrosine kinase and F-actin-binding functions of Abl. Disruption of the coiled coil by insertional mutagenesis inactivates the oligomerization function as well as the ability of Bcr-Abl to transform Rat-1 fibroblasts or to abrogate interleukin-3 dependence in lymphoid cells. These results strongly suggest that Bcr-Abl oligomers are the active entities in transformation.  相似文献   

8.
Vav is a guanine nucleotide exchange factor for the Rho/Rac family predominantly expressed in hematopoietic cells and implicated in cell proliferation and cytoskeletal organization. The oncogenic tyrosine kinase Bcr-Abl has been shown to activate Rac-1, which is important for Bcr-Abl induced leukemogenesis. Previous studies by Matsuguchi et al. (Matsuguchi, T., Inhorn, R. C., Carlesso, N., Xu, G., Druker, B., and Griffin, J. D. (1995) EMBO J. 14, 257-265) describe enhanced phosphorylation of Vav in Bcr-Abl-expressing Mo7e cells yet fail to demonstrate association of the two proteins. Here, we report the identification of a direct complex between Vav and Bcr-Abl in yeast, in vitro and in vivo. Furthermore, we show tyrosine phosphorylation of Vav by Bcr-Abl. Mutational analysis revealed that the SH2 domain and the C-terminal SH3 domain as well as a tetraproline motif directly adjacent to the N-terminal SH3 domain of Vav are important for establishing this phosphotyrosine dependent interaction. Activation of Rac-1 by Bcr-Abl was abrogated by co-expression of the Vav C terminus encoding the SH3-SH2-SH3 domains as a dominant negative construct. Bcr-Abl transduced primary bone marrow from Vav knock-out mice showed reduced proliferation in a culture cell transformation assay compared with wild-type bone marrow. These results suggest, that Bcr-Abl utilizes Vav as a guanine nucleotide exchange factor to activate Rac-1 in a process that involves a folding mechanism of the Vav C terminus. Given the importance of Rac-1 activation for Bcr-Abl-mediated leukemogenesis, this mechanism may be crucial for the molecular pathogenesis of chronic myeloid leukemia and of importance for other signal transduction pathways leading to the activation of Rac-1.  相似文献   

9.
10.
Transfection of the cDNA encoding the activated c-raf-1 protein or addition of 12-O-tetradecanoylphorbol-13-acetate (TPA) or dibutyryl cAMP to NIH/3T3 cells activated the c-fos gene enhancer linked to the chloramphenicol acetyltransferase or luciferase reporter gene. Prolonged treatment of NIH/3T3 cells with phorbol 12,13-dibutyrate caused down-regulation of protein kinase C. In these cells, addition of TPA did not stimulate the c-fos gene enhancer any more, but transfection of the c-raf-1 cDNA or addition of dibutyryl cAMP still stimulated the c-fos gene enhancer to the same extent as those induced in the control cells. Transfection of the c-raf-1 cDNA or addition of TPA to NIH/3T3 cells stimulated the serum response element and TPA response element but not the cAMP response element. In contrast, addition of dibutyryl cAMP to NIH/3T3 cells stimulated the cAMP response element but not the serum response element or TPA response element. These results indicate that the activated c-raf-1 protein stimulates the serum response element and TPA response element in a manner independent of protein kinase C and cAMP-dependent protein kinase. Since the c-fos gene enhancer has been shown to contain the serum response element and cAMP response element, it is most likely that the c-raf-1 protein is involved in the regulation of c-fos gene expression through the serum response element.  相似文献   

11.
Bcr-Abl is the constitutively active protein-tyrosine kinase expressed as a result of the Philadelphia translocation in chronic myelogenous leukemia. Bcr-Abl is coupled to many of the same signaling pathways normally regulated by hematopoietic cytokines. Recent work shows that Hck, a member of the Src tyrosine kinase family with myeloid-restricted expression, associates with and is activated by Bcr-Abl. Here we investigated the mechanism of Hck interaction with Bcr-Abl and the requirement for Hck activation in Bcr-Abl transformation signaling. Binding studies demonstrated that the Hck SH3 and SH2 domains are sufficient for interaction with Bcr-Abl in vitro. Hck binding localizes to the Abl SH2, SH3, and kinase domains as well as the distal portion of the C-terminal tail. To address the requirement for endogenous Src family kinase activation in Bcr-Abl signaling, a kinase-defective mutant of Hck was stably expressed in the cytokine-dependent myeloid leukemia cell line DAGM. Kinase-defective Hck dramatically suppressed Bcr-Abl-induced outgrowth of these cells in the absence of cytokine compared with a control cell line expressing beta-galactosidase. In contrast, kinase-defective Hck did not affect cell proliferation in response to interleukin-3, suggesting that the effect is specific for Bcr-Abl. These data show that Hck interacts with Bcr-Abl through a complex mechanism involving kinase-dependent and -independent components and that interaction with Hck or other Src family members is essential for transformation signaling by Bcr-Abl.  相似文献   

12.
The muscle-specific regulatory region of the alpha-cardiac myosin heavy-chain (MHC) gene contains the thyroid hormone response element (TRE) and two A/T-rich DNA sequences, designated A/T1 and A/T2, the putative myocyte-specific enhancer factor 2 (MEF2) binding sites. We investigated the roles of the TRE and MEF2 binding sites and the potential interaction between thyroid hormone receptor (TR) and MEF2 proteins regulating the alpha-MHC promoter. Deletion mutation analysis indicated that both the A/T2 motif and TRE were required for muscle-specific expression of the alpha-MHC gene. The alpha-MHC enhancer containing both the A/T2 motif and TRE was synergistically activated by coexpression of MEF2 and TR in nonmuscle cells, whereas neither factor by itself activated the alpha-MHC reporters. The reporter construct containing the A/T2 sequence and the TRE linked to a heterologous promoter also showed synergistic activation by coexpression of MEF2 and TR in nonmuscle cells. Moreover, protein binding assays demonstrated that MEF2 and TR specifically bound to one another in vitro and in vivo. The MADS domain of MEF2 and the DNA-binding domain of TR were necessary and sufficient to mediate their physical interaction. Our results suggest that the members of the MADS family (MEF2) and steroid receptor superfamily (TR) interact with one another to synergistically activate the alpha-cardiac MHC gene expression.  相似文献   

13.
14.
Early passage mouse embryo fibroblasts, mouse 3T3 cell lines, and early passage diploid human fibroblasts grew to higher cell densities in tissue culture medium supplemented with serum than in medium supplemented with defibrinogenated platelet-poor plasma (PPP). Unlike the mouse cells, the human fibroblasts displayed this differential growth response only in the presence of hypophysiologic concentrations of calcium. The addition of heat-treated extracts of human platelets to PPP-supplemented medium stimulated the replication of both the normal mouse cells and early passage human embryo fibroblasts. Human or mouse fibroblasts transformed by either retroviruses or by SV40, including SV40 infected “serum revertants” and “flat transformants,” grew to equal cell densities in medium supplemented with either serum or PPP. Infection of Balb/c-3T3 cells with SV40 rapidly induced them to grow in PPP-supplemented medium demonstrating that the ability of SV40-transformed cell lines to proliferate in PPP-supplemented medium does not arise from the cell culture selection procedures usually employed to obtain stable virus-transformed cell lines. 3T3 cells infected but not transformed by retroviruses do not replicate in PPP-supplemented medium demonstrating that reduction of the growth requirement for the platelet growth factor(s) by retroviruses is a transformation-specific response. Cell cultures that did not proliferate well in PPP-supplemented medium did not form tumors when inoculated into athymic nude mice. Many, although not all, of the lines which grew well in PPP medium were tumorigenic in nude mice. Together, these findings indicate that: (1) normal fibroblast-like cells display a growth requirement for factor(s) present in serum but not found in PPP; (2) this serum specific growth factor is derived from platelets; (3) a primary response to viral transforming genes is a reduction in the growth requirement for these platelet-derived factors; and (4) cells that have a reduced requirement for the platelet-derived growth factor are often tumorigenic.  相似文献   

15.
Growth factor receptor tyrosine kinase regulation of the sequential phosphorylation reactions leading to mitogen-activated protein (MAP) kinase activation in PC12 cells has been investigated. In response to epidermal growth factor, nerve growth factor, and platelet-derived growth factor, B-Raf and Raf-1 are activated, phosphorylate recombinant kinase-inactive MEK-1, and activate wild-type MEK-1. MEK-1 is the dual-specificity protein kinase that selectively phosphorylates MAP kinase on tyrosine and threonine, resulting in MAP kinase activation. B-Raf and Raf-1 are growth factor-regulated Raf family members which regulate MEK-1 and MAP kinase activity in PC12 cells. Protein kinase A activation in response to elevated cyclic AMP (cAMP) levels inhibited B-Raf and Raf-1 stimulation in response to growth factors. Ras.GTP loading in response to epidermal growth factor, nerve growth factor, or platelet-derived growth factor was unaffected by protein kinase A activation. Even though elevated cAMP levels inhibited Raf activation, the growth factor activation of MEK-1 and MAP kinase was unaffected in PC12 cells. The results demonstrate that tyrosine kinase receptor activation of MEK-1 and MAP kinase in PC12 cells is regulated by B-Raf and Raf-1, whose activation is inhibited by protein kinase A, and MEK activators, whose activation is independent of cAMP regulation.  相似文献   

16.
Sphingosine-1-phosphate, a sphingolipid metabolite, is involved in the mitogenic response of platelet-derived growth factor (PDGF) and is formed by activation of sphingosine kinase. We examined the effect of PDGF on sphingosine kinase activation in TRMP cells expressing wild-type or various mutant betaPDGF receptors. Sphingosine kinase was stimulated by PDGF in cells expressing wild-type receptors but not in cells expressing kinase-inactive receptors (R634). Cells expressing mutated PDGF receptors with phenylalanine substitutions at five major tyrosine phosphorylation sites 740/751/771/1009/1021 (F5 mutants), which are unable to associate with PLCgamma, phosphatidylinositol 3-kinase, Ras GTPase-activating protein, or protein tyrosine phosphatase SHP-2, not only failed to increase DNA synthesis in response to PDGF but also did not activate sphingosine kinase. Moreover, mutation of tyrosine-1021 of the PDGF receptor to phenylalanine, which impairs its association with PLCgamma, abrogated PDGF-induced activation of sphingosine kinase. In contrast, PDGF was still able to stimulate sphingosine kinase in cells expressing the PDGF receptor mutated at tyrosines 740/751 and 1009, responsible for binding of phosphatidylinositol 3-kinase and SHP-2, respectively. In agreement, PDGF did not stimulate sphingosine kinase activity in F5 receptor 'add-back' mutants in which association with the Ras GTPase-activating protein, phosphatidylinositol 3-kinase, or SHP-2 was individually restored. However, a mutant PDGF receptor that was able to bind PLCgamma (tyrosine-1021), but not other signaling proteins, restored sphingosine kinase sensitivity to PDGF. These data indicate that the tyrosine residue responsible for binding of PLCgamma is required for PDGF-induced activation of sphingosine kinase. Moreover, calcium mobilization downstream of PLCgamma, but not protein kinase C activation, appears to be required for stimulation of sphingosine kinase by PDGF.-Olivera, A., Edsall, J., Poulton, S., Kazlauskas, A., Spiegel, S. Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma.  相似文献   

17.
18.
19.
20.
In Philadelphia chromosome-positive human leukemias, which include chronic myelogenous leukemia and some acute lymphocytic leukemias, the c-abl proto-oncogene on chromosome 9 becomes fused to the bcr gene on chromosome 22, and Bcr-Abl fusion proteins are produced. The Bcr sequences activate the Abl tyrosine kinase which is required for the transforming function of Bcr-Abl. The Bcr sequences also enhance an F-actin-binding activity associated with c-Abl. Here, we show that binding of c-Abl and Bcr-Abl proteins to actin filaments in vivo and in vitro is mediated by an evolutionarily conserved domain at the C-terminal end of c-Abl. The c-Abl F-actin-binding domain contains a consensus motif found in several other actin-crosslinking proteins. Mutations in the consensus motif are shown to abolish binding to F-actin. Bcr-Abl proteins unable to associate with F-actin have a reduced ability to transform Rat-1 fibroblasts and to abrogate the requirement for interleukin-3 in the lymphoblastoid cell line Ba/F3. In transformed cells, Bcr-Abl induces a redistribution of F-actin into punctate, juxtanuclear aggregates. The binding to actin filaments has important implications for the pathogenic and physiological functions of the Bcr-Abl and c-Abl proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号