首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyoxylate cycle in Mucor racemosus.   总被引:1,自引:0,他引:1       下载免费PDF全文
The dimorphic phycomycete Mucor racemosus was grown in media containing acetate, glutamate, and peptone as carbon sources. The component enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase, were present under these conditions throughout the growth cycles. Highest specific activities for each enzyme were found in media with acetate as the carbon source. In an enriched peptone medium containing glucose, neither activity was detected until glucose was exhausted from the medium. Treatment of acetate-grown cells with glucose resulted in a rapid decline in the specific activities of both enzymes. The importance of this cycle in acetate-grown cells was indicated by the ability of itaconic acid (100 mM) to inhibit the growth of M. racemosus in acetate but not glutamate media. Itaconate was also shown to be a potent inhibitor of isocitrate lyase activity in vitro.  相似文献   

2.
Nocardia salmonicolor, grown on acetate, commercial D,L-lactate or hydrocarbon substrates, has high isocitrate lyase activities compared with those resulting from growth on other carbon sources. This presumably reflects the anaplerotic role of the glyoxylate cycle during growth on the former substrates. Amongst a variety of compounds tested, including glucose, pyruvate and tricarboxylic acid cycle intermediates, only succinate and fumarate prevented an increase in enzyme activity in the presence of acetate. When acetate (equimolar to the initial sugar concentration) was added to cultures growing on glucose, there followed de novo synthesis of isocitrated lyase and isocitrate dehydrogenase, with increases in growth rate and glucose utilization, and both acetate and glucose were metabolized simultaneously. A minute amount of acetate (40 muM) caused isocitrate lyase synthesis (a three-fold increase in activity within 3 min of addition) when added to glucose-limited continuous cultures, but even large amounts added to nitrogen-limited batch cultures were ineffective. Malonate, at a concentration that was not totally growth-inhibitory (1mM) prevented the inhibition of acetate-stimulated isocitrate lyase synthesis by succinate, but fumarate still inhibited in the presence of malonate. Phosphoenolpyruvate is a non-competitive inhibitor of the enzyme (apparent Ki 1-7 mM). The results are consistent with the induction of isocitrate or a closely related metabolite, and catabolite repression by a C-4 acid of the tricarboxylic acid cycle, possibly fumarate.  相似文献   

3.
McFadden, Bruce A. (Washington State University, Pullman, Wash.) and William V. Howes. Oxidative metabolism and the glyoxylate cycle in Pseudomonas indigofera. J. Bacteriol. 84:72-76. 1962.-Oxidative patterns of Pseudomonas indigofera have been investigated. Intact cells oxidize acetate, ethanol, fumarate, glyoxylate, alpha-ketoglutarate, malate, oxaloacetate, pyruvate, and succinate to greater than 35% of completion. Isocitrate is oxidized to 21% of completion. Citrate is not oxidized by whole cells but is oxidized by cell-free preparations, as are fumarate, isocitrate, malate, and succinate. These patterns are suggestive of the operation of the tricarboxylic acid cycle. Investigations of levels of isocitrate lyase and malate synthase as functions of growth substrate have been conducted. Assays for these enzymes in "soluble" preparations were performed under ostensibly optimal conditions for catalysis. Growth substrates used at 0.3% were: (i) ethanol, (ii) glucose, (iii) succinic acid, and (iv) yeast extract. Specific activities of isocitrate lyase were: for (i) 3.80, (ii) 0.61, (iii) 1.47, and (iv) 1.33; activities of malate synthase were: for (i) 0.18, (ii) 0.032, (iii) 0.021, and (iv) 0.029. Additionally, the isocitrate lyase level from butyrate-grown cells was similar to that for ethanol-grown cells; the specific activity of malate synthase was about 60% as high. Specific activities of these enzymes were reproducible when conditions of sonic disruption were standardized. Longer durations of disruption decreased both activities.  相似文献   

4.
The succinate analog itaconic acid was observed to be a competitive inhibitor of the glyoxylate cycle specific enzyme isocitrate lyase (EC 4.1.3.1) in cell-free extracts of Tetrahymena pyriformis. Itaconic acid also inhibited net in vivo glycogen synthesis from glyoxylate cycle-dependent precursors such as acetate but not from glyoxylate cycle-independent precursors such as fructose. The effect of itaconic acid on the incorporation of 14C into glycogen from various 14C-labeled precursors was also consistent with inhibition of isocitrate lyase by this compound. Another analog of succinate which shares a common metabolic fate with itaconic acid, mesaconic acid, had no effect on isocitrate lyase activity in vitro or on 14C-labeled precursor incorporation into glycogen in vivo. In addition, itaconic acid did not affect gluconeogenesis from lactate in isolated perfused rat livers, a system lacking the enzyme isocitrate lyase. These results are taken as evidence that itaconic acid is an inhibitor of glyoxylate cycle-dependent glyconeogenesis Tetrahymena pyriformis via specific competitive inhibition of isocitrate lyase activity.  相似文献   

5.
In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards glyoxylate would increase, leading to excess formation of malate and succinate compared to the wild-type. However, metabolic network analysis showed that an increased icl expression did not result in an increased glyoxylate bypass flux. The analysis did show a global response with respect to gene expression, leading to an increased flux through the oxidative part of the TCA cycle. Instead of an increased production of succinate and malate, a major increase in fumarate production was observed.The effect of malonate, a competitive inhibitor of succinate dehydrogenase (SDH), on the physiological behaviour of the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Furthermore, in the strain with over-expression of icl the organic acid production shifted from fumarate towards malate production when malonate was added to the cultivation medium.Overall, the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct and interesting production of fumarate and malate was found.  相似文献   

6.
Control of Malate Synthase Formation in Rhizopus nigricans   总被引:2,自引:1,他引:1       下载免费PDF全文
The control of malate synthase formation in a fumaric acid-producing strain of Rhizopus nigricans has been found to be similar in most respects to that of isocitrate lyase, the companion enzyme of the glyoxylate bypass. A basal level is formed in a casein hydrolysate medium, which is repressed by glucose. Utilization of glucose during growth results in relief of glucose repression. Any factor which stimulates growth promotes relief of glucose repression by enhancing the incorporation of repressor metabolites derived from glucose into cell material. Thus, malate synthase formation was enhanced in glucose-containing media by the addition of zinc, or by an increase of the concentration of available nitrogen source in a synthetic medium. Both acetate and glycolate acted as apparent inducers of malate synthase, with glycolate the more effective of the two when added alone. Acetate induction was enhanced by Zn++, however, whereas induction by glycolate was unaffected. This supports the concept that acetate stimulates formation of glyoxylate bypass enzymes by a derepression mechanism, whereas glycolate or a product derived from it acts directly as an inducer. Moreover, it is indicated that the malate synthases induced by acetate and glycolate are separate and distinct, as has been shown in Escherichia coli.  相似文献   

7.
SYNOPSIS. Seven strains of Tetrahymena pyriformis were assayed for log phase activity of the glyoxylate bypass enzymes isocitrate lyase and malate synthase. In strains 6I, 6II, 6III, and W, isocitrate lyase was induced; in HS, neither enzyme was induced by acetate. During growth in glucose- or acetate-containing media, strains 6III and GL had 2 periods of increased glyoxylate bypass and isocitrate dehydrogenase enzyme activities. Enzyme activities reached a maximum at the end of log phase, declined until the middle of stationary phase, and then increased again to a maximum near the end of stationary phase.  相似文献   

8.
Escherichia coli NZN111, which lacks activities for pyruvate-formate lyase and lactate dehydrogenase, and AFP111, a derivative which contains an additional mutation in ptsG (a gene encoding an enzyme of the glucose phophotransferase system), accumulate significant levels of succinic acid (succinate) under anaerobic conditions. Plasmid pTrc99A-pyc, which expresses the Rhizobium etli pyruvate carboxylase enzyme, was introduced into both strains. We compared growth, substrate consumption, product formation, and activities of seven key enzymes (acetate kinase, fumarate reductase, glucokinase, isocitrate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxylase, and pyruvate carboxylase) from glucose for NZN111, NZN111/pTrc99A-pyc, AFP111, and AFP111/pTrc99A-pyc under both exclusively anaerobic and dual-phase conditions (an aerobic growth phase followed by an anaerobic production phase). The highest succinate mass yield was attained with AFP111/pTrc99A-pyc under dual-phase conditions with low pyruvate carboxylase activity. Dual-phase conditions led to significant isocitrate lyase activity in both NZN111 and AFP111, while under exclusively anaerobic conditions, an absence of isocitrate lyase activity resulted in significant pyruvate accumulation. Enzyme assays indicated that under dual-phase conditions, carbon flows not only through the reductive arm of the tricarboxylic acid cycle for succinate generation but also through the glyoxylate shunt and thus provides the cells with metabolic flexibility in the formation of succinate. Significant glucokinase activity in AFP111 compared to NZN111 similarly permits increased metabolic flexibility of AFP111. The differences between the strains and the benefit of pyruvate carboxylase under both exclusively anaerobic and dual-phase conditions are discussed in light of the cellular constraint for a redox balance.  相似文献   

9.
The 3-hydroxypropionate cycle is a bicyclic autotrophic CO(2) fixation pathway in the phototrophic Chloroflexus aurantiacus (Bacteria), and a similar pathway is operating in autotrophic members of the Sulfolobaceae (Archaea). The proposed pathway involves in a first cycle the conversion of acetyl-coenzyme A (acetyl-CoA) and two bicarbonates to L-malyl-CoA via 3-hydroxypropionate and propionyl-CoA; L-malyl-CoA is cleaved by L-malyl-CoA lyase into acetyl-CoA and glyoxylate. In a second cycle, glyoxylate and another molecule of propionyl-CoA (derived from acetyl-CoA and bicarbonate) are condensed by a putative beta-methylmalyl-CoA lyase to beta-methylmalyl-CoA, which is converted to acetyl-CoA and pyruvate. The putative L-malyl-CoA lyase gene of C. aurantiacus was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Beta-methylmalyl-CoA lyase was purified from cell extracts of C. aurantiacus and characterized. We show that these two enzymes are identical and that both enzymatic reactions are catalyzed by one single bifunctional enzyme, L-malyl-CoA lyase/beta-methylmalyl-CoA lyase. Interestingly, this enzyme works with two different substrates in two different directions: in the first cycle of CO(2) fixation, it cleaves L-malyl-CoA into acetyl-CoA and glyoxylate (lyase reaction), and in the second cycle it condenses glyoxylate with propionyl-CoA to beta-methylmalyl-CoA (condensation reaction). The combination of forward and reverse directions of a reversible enzymatic reaction, using two different substrates, is rather uncommon and reduces the number of enzymes required in the pathway. In summary, L-malyl-CoA lyase/beta-methylmalyl-CoA lyase catalyzes the interconversion of L-malyl-CoA plus propionyl-CoA to beta-methylmalyl-CoA plus acetyl-CoA.  相似文献   

10.
Two of the three known metabolic pathways to serine and glycine have been shown to be present in prototrophic yeast strains, i.e., the phosphorylated pathway from glycolytic intermediates and the glyoxylate pathway from tricarboxylic acid cycle intermediates. Two serine-glycine auxotrophs (ser1 and ser2) were found to be blocked in the phosphoglycerate pathway. The ser1 gene controls l-glutamate:phosphohydroxypyruvate transaminase biosynthesis, and the ser2 gene controls phosphoserine phosphatase biosynthesis. The other pathway to glycine, from isocitrate, is repressed by growth in glucose media, specifically, at isocitrate lyase and at the alanine:glyoxylate transaminase. This pathway is derepressed by growth to stationary phase in glucose media yielding high activity of these enzymes. The phosphorylated pathway appears to be the principal biosynthetic pathway to serine and glycine during growth on sugar media. Strains which are serine-glycine dependent in glucose media became capable of serine-glycine independent growth on acetate media. These results describe a method of physiological control of a secondary metabolic pathway allowing a single lesion in the principal biosynthetic pathway to produce auxotrophy. This may be termed conditional auxotrophy.  相似文献   

11.
Two strains of Klebsiella (SM6 and SM11) were isolated from rhizospheric soil that solubilized mineral phosphate by secretion of oxalic acid from glucose. Activities of enzymes for periplasmic glucose oxidation (glucose dehydrogenase) and glyoxylate shunt (isocitrate lyase and glyoxylate oxidase) responsible for oxalic acid production were estimated. In presence of succinate, phosphate solubilization was completely inhibited, and the enzymes glucose dehydrogenase and glyoxylate oxidase were repressed. Significant activity of isocitrate lyase, the key enzyme for carbon flux through glyoxylate shunt and oxalic acid production during growth on glucose suggested that it could be inducible in nature, and its inhibition by succinate appeared to be similar to catabolite repression.  相似文献   

12.
Y H Ko  P Vanni  G R Munske  B A McFadden 《Biochemistry》1991,30(30):7451-7456
The inactivation of tetrameric 188-kDa isocitrate lyase from Escherichia coli at pH 6.8 (37 degrees C) by diethyl pyrocarbonate, exhibiting saturation kinetics, is accompanied by modification of histidine residues 266 and 306. Substrates isocitrate, glyoxylate, or glyoxylate plus succinate protect the enzyme from inactivation, but succinate alone does not. Removal of the carbethoxy groups from inactivated enzyme by treatment with hydroxylamine restores activity of isocitrate lyase. The present results suggest that the group-specific modifying reagent diethyl pyrocarbonate may be generally useful in determining the position of active site histidine residues in enzymes.  相似文献   

13.
The ethanol-grown cells of the mutant Acinetobacter sp. strain 1NG, incapable of producing exopolysaccharides, were analyzed for the activity of enzymes of the tricarboxylic acid (TCA) cycle and some biosynthetic pathways. In spite of the presence of both key enzymes (isocitrate lyase and malate synthase) of the glyoxylate cycle, these cells also contained all enzymes of the TCA cycle, which presumably serves biosynthetic functions. This was evident from the high activity of isocitrate dehydrogenase and glutamate dehydrogenase and the low activity of 2-oxoglutarate dehydrogenase. Pyruvate was formed in the reaction catalyzed by oxaloacetate decarboxylase, whereas phosphoenolpyruvate (PEP) was synthesized by the two key enzymes (PEP carboxykinase and PEP synthase) of gluconeogenesis. The proportion between these enzymes was different in the exponential and the stationary growth phases. The addition of the C4-dicarboxylic acid fumarate to the ethanol-containing growth medium led to a 1.5- to 2-fold increase in the activity of enzymes of the glyoxylate cycle, as well as of fumarate hydratase, malate dehydrogenase, PEP synthase, and PEP carboxykinase (the activity of the latter enzyme increased by more than 7.5 times). The data obtained can be used to improve the biotechnology of production of the microbial exopolysaccharide ethapolan on C2-substrates.  相似文献   

14.
15.
The productivity of Escherichia coli as a producer of recombinant proteins is affected by its metabolic properties, especially by acetate production. Two commercially used E. coli strains, BL21 (lambdaDE3) and JM109, differ significantly in their acetate production during batch fermentation at high initial glucose concentrations. E. coli BL21 grows to an optical density (OD, 600 nm) of 100 and produces no more than 2 g/L acetate, while E. coli JM109 grows to an OD (600 nm) of 80 and produces up to 14 g/L acetate. Even in fed-batch fermentation, when glucose concentration is maintained between 0.5 and 1.0 g/L, JM109 accumulates 4 times more acetate than BL21. To investigate the difference between the two strains, metabolites and enzymes involved in carbon utilization and acetate production were analyzed (isocitrate, ATP, phosphoenolpyruvate, pyruvate, isocitrate lyase, and isocitrate dehydrogenase). The results showed that during batch fermentation isocitrate lyase activity and isocitrate concentration were higher in BL21 than in JM109, while pyruvate concentration was higher in JM109. The activation of the glyoxylate shunt pathway at high glucose concentrations is suggested as a possible explanation for the lower acetate accumulation in E. coli BL21. Metabolic flux analysis of the batch cultures supports the activity of the glyoxylate shunt in E. coli BL21.  相似文献   

16.
Establishment or maintenance of a persistent infection by Mycobacterium tuberculosis requires the glyoxylate pathway. This is a bypass of the tricarboxylic acid cycle in which isocitrate lyase and malate synthase (GlcB) catalyze the net incorporation of carbon during growth of microorganisms on acetate or fatty acids as the primary carbon source. The glcB gene from M. tuberculosis, which encodes malate synthase, was cloned, and GlcB was expressed in Escherichia coli. The influence of media conditions on expression in M. tuberculosis indicated that this enzyme is regulated differentially to isocitrate lyase. Purified GlcB had K(m) values of 57 and 30 microm for its substrates glyoxylate and acetyl coenzyme A, respectively, and was inhibited by bromopyruvate, oxalate, and phosphoenolpyruvate. The GlcB structure was solved to 2.1-A resolution in the presence of glyoxylate and magnesium. We also report the structure of GlcB in complex with the products of the reaction, coenzyme A and malate, solved to 2.7-A resolution. Coenzyme A binds in a bent conformation, and the details of its interactions are described, together with implications on the enzyme mechanism.  相似文献   

17.
18.
Escherichia coli NZN111, which lacks activities for pyruvate-formate lyase and lactate dehydrogenase, and AFP111, a derivative which contains an additional mutation in ptsG (a gene encoding an enzyme of the glucose phophotransferase system), accumulate significant levels of succinic acid (succinate) under anaerobic conditions. Plasmid pTrc99A-pyc, which expresses the Rhizobium etli pyruvate carboxylase enzyme, was introduced into both strains. We compared growth, substrate consumption, product formation, and activities of seven key enzymes (acetate kinase, fumarate reductase, glucokinase, isocitrate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxylase, and pyruvate carboxylase) from glucose for NZN111, NZN111/pTrc99A-pyc, AFP111, and AFP111/pTrc99A-pyc under both exclusively anaerobic and dual-phase conditions (an aerobic growth phase followed by an anaerobic production phase). The highest succinate mass yield was attained with AFP111/pTrc99A-pyc under dual-phase conditions with low pyruvate carboxylase activity. Dual-phase conditions led to significant isocitrate lyase activity in both NZN111 and AFP111, while under exclusively anaerobic conditions, an absence of isocitrate lyase activity resulted in significant pyruvate accumulation. Enzyme assays indicated that under dual-phase conditions, carbon flows not only through the reductive arm of the tricarboxylic acid cycle for succinate generation but also through the glyoxylate shunt and thus provides the cells with metabolic flexibility in the formation of succinate. Significant glucokinase activity in AFP111 compared to NZN111 similarly permits increased metabolic flexibility of AFP111. The differences between the strains and the benefit of pyruvate carboxylase under both exclusively anaerobic and dual-phase conditions are discussed in light of the cellular constraint for a redox balance.  相似文献   

19.
When Rhodopseudomonas gelatinosa was grown on acetate aerobically in the dark both enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase, could be detected. However, under anaerobic conditions in the light only isocitrate lyase, but not malate synthase, could be found.The reactions, which bypass the malate synthase reaction are those catalyzed by alanine glyoxylate aminotransferase and the enzymes of the serine pathway.Other Rhodospirillaceae were tested for isocitrate lyase and malate synthase activity after growth with acetate; they could be divided into three groups: I. organisms possessing both enzymes; 2. organisms containing malate synthase only; 3. R. gelatinosa containing only isocitrate lyase when grown anaerobically in the light.  相似文献   

20.
In Aspergillus nidulans, activity of the glyoxylate cycle enzyme isocitrate lyase is finely regulated. Isocitrate lyase is induced by growth on C2 compounds and long-chain fatty acids and repressed by glucose. In addition, activity of isocitrate lyase is subject to a second mechanism of catabolite control, glucose-induced inactivation. Here, we demonstrate that the catabolite inactivation of A. nidulans isocitrate lyase, a process that takes place during glucose adaptation of cells grown under gluconeogenic conditions, occurs by proteolysis of the enzyme. Ultrastructural analyses were carried out in order to investigate the cellular processes that govern the catabolite inactivation of this peroxisomal enzyme. Addition of glucose to oleate-induced cells triggered the specific engulfment and sequestration of peroxisomes by the vacuoles. Sequestration of various peroxisomes by a single vacuole was a frequently observed phenomenon. Results obtained by immunoelectron microscopy using antibodies against A. nidulans isocitrate lyase showed that degradation of this peroxisomal enzyme occurred inside the vacuole. In addition, ultrastructural studies demonstrated that microautophagy was the autophagic pathway involved in degradation of redundant peroxisomes during glucose adaptation of oleate-induced cells of A. nidulans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号