首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To analyze the role of the retinal vascular endothelial cells in the development of experimental autoimmune uveitis (EAU), we studied the presence of Ia antigen and FN in retinal vessels of Lewis rats immunized with retinal S antigen. Immunopathologic studies were performed on frozen tissues obtained during various stages of the disease. Our results show that Ia antigen was not present in the normal rat retina, and there was very little FN present in a few retinal vessels. One to two days prior to the histologic and clinical onset of EAU, FN was found to be increased in the retinal vessels. Ia antigen was found to be present in the retinal vessels coincident with the first signs of cellular infiltration. During the stage of maximal cellular infiltration, FN was present diffusely throughout the retina, as well as in the subretinal space, and Ia antigen was found diffusely in the cellular infiltrate. Therefore, FN and Ia antigen reflect the immunomodulation of vascular endothelial cells in EAU, which may be very important in the pathogenesis of retinal S antigen-induced uveitis. Two possible mechanisms for the role of the activation of the retinal vascular endothelium in the development of retinal inflammation in uveitis are discussed.  相似文献   

2.
Bandeiraea simplicifolia B4 isolectin (BSLB4) and polyclonal antisera against von Willebrand factor (VWF) were used to study the origin of endothelial cells and their organization into blood vessels in the postimplantation mouse embryo. Examination of BSLB4-stained whole mounted and sectioned embryos revealed intense staining of the endothelium, highlighting large vessels, capillaries, and many individual cells. Dorsal aorta formation was first obvious at E7 when many lectin-positive cells appeared in paraxial and lateral plate mesoderm. As development proceeded to E8, BSLB4-positive cells became organized into craniocaudal lines destined to become the aorta proper. At E9, BSLB4 stained all vessels of the embryo including the dorsal aorta, the intersomitic arteries, and the endocardium. VWF expression was not detected until E8 when BSLB4/VWF double-stained sections revealed the dorsal aortae as the first VWF-positive vessels, while other endothelium visible with BSLB4 remained negative for VWF immunostaining. By E12 many other vessels became VWF-positive, including the aortic arches, the intersomitic arteries, and the cardinal veins. However, many angioblasts and capillaries remained VWF-negative, reflecting the heterogeneous expression of VWF among endothelium that has been reported in adults of other species. The histochemical data reported here support the conclusions of earlier avian studies by showing distinct vascular patterns in the initial formation of vessels from isolated angioblasts (vasculogenesis), followed by the extension and organization of the initial vascular structures (angiogenesis). Moreover, our data suggest that the endothelium arises from distinct VWF-positive sources associated with the dorsal aorta, as well as VWF-negative sources associated with other vessels in the embryo.  相似文献   

3.
Selective permeability of endocardial endothelium has been suggested as a mechanism underlying the modulation of the performance of subjacent myocardium. In this study, we characterized the organization and permeability of junctional complexes in ventricular endocardial endothelium in rat heart. The length of intercellular clefts viewed en face per unit endothelial cell surface area was lower, and intercellular clefts were deeper in endocardial endothelium than in myocardial vascular endothelium, whereas tight junctions had a similar structure in both endothelia. On this basis, endocardia endothelium. might be less permeable than capillary endothelium. However, confocal scanning laser microscopy showed that intravenously injected dextran 10000 coupled to Lucifer Yellow penetrated first the endocardial endothelium and later the myocardial capillary endothelium. Penetration of dextran 10000 in myocardium occurred earlier through subepicardial capillary endothelium than through subendocardial capillary endothelium. Penetration of tracer might thus be influenced by hydrostatic pressure. Dextran of MW 40000 did not diffuse through either endocardial endothelium or capilary endothelium. The ultrastructure of endocardial endothelium may constitute an adaptation to limit diffusion driven by high hydrostatic pressure in the heart. Differences in paracellular diffusion of dextran 10000 between endocardial endothelium and myocardial vessels, may result from differing permeability properties of the endocardium and underlying myocardium.  相似文献   

4.
Ontogenic emergence of a quail leukocyte/endothelium cell surface antigen   总被引:1,自引:0,他引:1  
The ontogenic emergence of MB1, a quail cell surface antigen expressed by endothelial and hemopoietic cells but not erythrocytes, was followed by direct immunofluorescent staining of transverse sections of the developing blastodisc, from the stage of the cephalic fold until 22 pairs of somites. Along the developmental sequence that leads from hemangioblasts, the mesodermal precursors of both endothelium and hemopoietic cells, to vessels containing blood cells, MB1 is first expressed by arising endothelial cells. These first emerge as flattened cells at the periphery of hemangioblastic clusters in the area opaca from the stage of one pair of somites and slightly later as unicellular angioblasts in the area pellucida and in the embryo. MB1 expression is then maintained on endothelium as vessels develop, in contrast with extraembryonic blood islands in which primitive erythroblasts remain MB1-negative. A small proportion of blood island cells and budding of endothelium contribute a population of MB1-positive hemopoietic cells appearing soon after the onset of angiogenesis.  相似文献   

5.
The difficulty of identifying and differentiating lymphatic and blood microvessels in tissue sections can be overcome by a monoclonal antibody specific for lymphatic endothelium. Unfortunately, the only known antibody also reacts with the endothelium of some blood vessels. The technique of double immunization (passive, with an antiserum to blood endothelium, and active, with a suspension of lymphatic endothelial cells) was, therefore, used to increase the chances of recognizing specific lymphatic antigens by the mouse immune system. The monoclonal antibody obtained, LyMAb, a G1 immunoglobulin, reacted strongly with the endothelium of bovine thoracic duct, mesenteric collecting vessels and lymphatic vessels of gall-bladder and lymph nodes and moderately with those of the intestinal wall. Blood vessels (intercostal arteries, azygos vein and blood microvessels of all organs tested) were consistently negative. The antibody was species-specific and did not react with formalin-fixed, paraffin-embedded sections. Cross-reactivity was limited to some connective tissue fibres and scattered cells in the lymph node parenchyma, intestinal villi and hepatic lobules.  相似文献   

6.
During the initiation of endochondral ossification three events occur that are inextricably linked in time and space: chondrocytes undergo terminal differentiation and cell death, the skeletal vascular endothelium invades the hypertrophic cartilage matrix, and osteoblasts differentiate and begin to deposit a bony matrix. These developmental programs implicate three tissues, the cartilage, the perichondrium, and the vascular endothelium. Due to their intimate associations, the interactions among these three tissues are exceedingly difficult to distinguish and elucidate. We developed an ex vivo system to unlink the processes initiating endochondral ossification and establish more precisely the cellular and molecular contributions of the three tissues involved. In this ex vivo system, the renal capsule of adult mice was used as a host environment to grow skeletal elements. We first used a genetic strategy to follow the fate of cells derived from the perichondrium and from the vasculature. We found that the perichondrium, but not the host vasculature, is the source of both trabecular and cortical osteoblasts. Endothelial cells residing within the perichondrium are the first cells to participate in the invasion of the hypertrophic cartilage matrix, followed by endothelial cells derived from the host environment. We then combined these lineage analyses with a series of tissue manipulations to address how the absence of the perichondrium or the vascular endothelium affected skeletal development. We show that although the perichondrium influences the rate of chondrocytes maturation and hypertrophy, it is not essential for chondrocytes to undergo late hypertrophy. The perichondrium is crucial for the proper invasion of blood vessels into the hypertrophic cartilage and both the perichondrium and the vasculature are essential for endochondral ossification. Collectively, these studies clarify further the contributions of the cartilage, perichondrium, and vascular endothelium to long bone development.  相似文献   

7.
Vascular endothelium: the battlefield of dengue viruses   总被引:1,自引:0,他引:1  
Increased vascular permeability without morphological damage to the capillary endothelium is the cardinal feature of dengue haemorrhagic fever (DHF)/dengue shock syndrome (DSS). Extensive plasma leakage in various tissue spaces and serous cavities of the body, including the pleural, pericardial and peritoneal cavities in patients with DHF, may result in profound shock. Among various mechanisms that have been considered include immune complex disease, T-cell-mediated, antibodies cross-reacting with vascular endothelium, enhancing antibodies, complement and its products, various soluble mediators including cytokines, selection of virulent strains and virus virulence, but the most favoured are enhancing antibodies and memory T cells in a secondary infection resulting in cytokine tsunami. Whatever the mechanism, it ultimately targets vascular endothelium (making it a battlefield) leading to severe dengue disease. Extensive recent work has been done in vitro on endothelial cell monolayer models to understand the pathophysiology of vascular endothelium during dengue virus (DV) infection that may be translated to help understand the pathogenesis of DHF/DSS. The present review provides a broad overview of the effects of DV infection and the associated host responses contributing towards alterations in vascular endothelial cell physiology and damage that may be responsible for the DHF/DSS.  相似文献   

8.
The influence of nitric oxide (NO) on vascular responses to transmural stimulation (TNS) of noradrenergic nerves was studied in isolated rings of rat iliac arteries. TNS produced frequency-dependent contractions in all vessels. The NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) significantly enhanced TNS responses in intact vessels, but not in those in which the endothelium had been removed. However, in endothelium-denuded rings incubated for 8 hours, L-NMMA increased the contractions induced by nerve stimulation, an effect which was prevented by treatment with dexamethasone or cycloheximide, and enhanced by incubation with lipopolysaccharide and gamma-interferon. Addition of L-arginine reversed the effect of L-NMMA in intact rings; however, it significantly decreased below control values TNS-induced contractions in vessels without endothelium. The results indicate that a) the arterial response to noradrenergic nerve stimulation is modulated by NO originating either in endothelial cells or in smooth muscle cells after induction of NO synthase activity, and b) once NO synthase is induced, the limiting step in NO production is the availability of the substrate L-arginine. An overproduction of vascular NO in the presence of endotoxin or other inflammatory stimuli may prevent the vascular response to sympathetic stimuli and contribute to the vasodilation observed in inflammation or endotoxic shock.  相似文献   

9.
Secretory functions of the vascular endothelium.   总被引:3,自引:0,他引:3  
The endothelial cells which line the blood vessels as a monolayer exert a remarkable control over the vascular system. Indeed, the endothelium can be regarded as a highly active metabolic and endocrine organ in its own right. On the hand, vasoactive substances such as serotonin and bradykinin are inactivated and on the other the cells can enzymatically produce the vasoconstrictor, angiotensin II and secrete endothelin-1 ((ET-1). Perhaps more importantly, the cells also produce two unstable vasodilator substances, which potently inhibit platelet clumping: prostacyclin and endothelium-derived relaxing factor (EDRF) which has been identified as nitric oxide (NO; 1). Both substances seem well designated as local hormones, released to influence adjacent cells. The endothelial cell, therefore, exerts control over the cardiovascular system by elaborating dilator substances as well as vasconstrictors.  相似文献   

10.
Small vascular units consisting of an arteriole, its capillaries, and the emerging venule (ACV units) were identified in the rat omentum and mesentery. They were fixed in situ and processed for electron microscopy either as whole units or as dissected segments. Systematic examination of the latter (in thin sections, as well as in freeze-cleaved preparations) showed that the intercellular junctions of the vascular endothelium vary characteristically from one segment to another in the microvasculature. In arterioles, the endothelium has continuous and elaborate tight junctions with interpolated large gap junctions. The capillary endothelium is provided with tight junctions formed by either branching or staggered strands; gap junctions are absent at this level. The pericytic venules exhibit loosely organized endothelial junctions with discontinuous low-profile ridges and grooves, usually devoid of particles. No gap junctions were found in these vessels. The endothelium of muscular venules has the same type of junctions (discontinuous ridges and grooves of low profile); in addition, it displays isolated gap junctions of smaller size and lower frequency than in arterioles. The term communicating junction (macula communicans) is proposed as a substitute for gap junctions, since the latter is inappropriate, in general, and confusing in the special case of the vascular endothelium.  相似文献   

11.
Fluid shear stress and the vascular endothelium: for better and for worse   总被引:28,自引:0,他引:28  
As blood flows, the vascular wall is constantly subjected to physical forces, which regulate important physiological blood vessel responses, as well as being implicated in the development of arterial wall pathologies. Changes in blood flow, thus generating altered hemodynamic forces are responsible for acute vessel tone regulation, the development of blood vessel structure during embryogenesis and early growth, as well as chronic remodeling and generation of adult blood vessels. The complex interaction of biomechanical forces, and more specifically shear stress, derived by the flow of blood and the vascular endothelium raise many yet to be answered questions:How are mechanical forces transduced by endothelial cells into a biological response, and is there a "shear stress receptor"?Are "mechanical receptors" and the final signaling pathways they evoke similar to other stimulus-response transduction systems?How do vascular endothelial cells differ in their response to physiological or pathological shear stresses?Can shear stress receptors or shear stress responsive genes serve as novel targets for the design of diagnostic and therapeutic modalities for cardiovascular pathologies?The current review attempts to bring together recent findings on the in vivo and in vitro responses of the vascular endothelium to shear stress and to address some of the questions raised above.  相似文献   

12.
13.
alpha-tocopherol, the most potent antioxidant form of vitamin E, is mainly bound to lipoproteins in plasma and its incorporation into the vascular wall can prevent the endothelium dysfunction at an early stage of atherogenesis. In the present study, the plasma phospholipid transfer protein (PLTP) was shown to promote the net mass transfer of alpha-tocopherol from high density lipoproteins (HDL) and alpha-tocopherol-albumin complexes toward alpha-tocopherol-depleted, oxidized low density lipoproteins (LDL). The facilitated transfer reaction of alpha-tocopherol could be blocked by specific anti-PLTP antibodies. These observations indicate that PLTP may restore the antioxidant potential of plasma LDL at an early stage of the oxidation cascade that subsequently leads to cellular damages. In addition, the present study demonstrated that the PLTP-mediated net mass transfer of alpha-tocopherol can constitute a new mechanism for the incorporation of alpha-tocopherol into the vascular wall in addition to the previously recognized LDL receptor and lipoprotein lipase pathways. In ex vivo studies on rabbit aortic segments, the impairment of the endothelium-dependent arterial relaxation induced by oxidized LDL was found to be counteracted by a pretreatment with purified PLTP and alpha-tocopherol-albumin complexes, and both the maximal response and the sensitivity to acetylcholine were significantly improved. We conclude that PLTP, by supplying oxidized LDL and endothelial cells with alpha-tocopherol through a net mass transfer reaction may play at least two distinct beneficial roles in preventing endothelium damage, i.e., the antioxidant protection of LDL and the preservation of a normal relaxing function of vascular endothelial cells.  相似文献   

14.
The goal of this work has been to label endothelial cells with fluorescent marker and to record their behavior during angiogenesis in vivo. Single blastomeres in 16-128-cell-stage embryos of pigment-deficient Xenopus laevis were injected intracellularly with 5% tetramethyl-rhodamine dextran. Subsequently, the embryos and tadpoles were examined with an epifluorescence microscope, a silicon-intensified target (SIT) camera, and video recordings. Clones that would include endothelium could be selected as early as stages 33-36 on the basis of heavy labeling in the ventral mesodermal core of the tail. Strands of fluorescent cells and early vessels appeared in the tail at stages 39-41. Subsequently, groups of endothelial cells were followed in case histories in the tail and in the aortic arches and gills of tadpoles. Two main results were that the patterns of fluorescent endothelial cells were stable in established arteries, veins, and capillaries for at least 2-12 days, and that labeled endothelial cells migrated distally in elongating sprouts. In addition, it was inferred that endothelium was derived from multiple blastomeres, probably in the ventral vegetal regions. Only small fractions of total endothelium were labeled from any single blastomere. None of the early blastomeres produced exclusive clones of vascular endothelium; other labeled cell types in various clones included muscle fibers, lymphatics, mesodermal stellate cells, blood cells, gut, proctodeum, and some epidermis, in addition to endothelial cells. The method of intracellular marking of blastomeres is recognized as a direct approach for charting lineage and fate tables in embryos of Xenopus and other species. The present study extends the period of observation in vivo for up to 2 weeks in the growing tadpole and focuses on endothelial cells during angiogenesis. Even though fluorescent dextran was apparently packaged in vesicles and metabolized, individual cells and small groups could be identified and followed with time. This method provides excellent opportunities for addressing problems in vascular development in the living animal.  相似文献   

15.
Proteins and vesicular transport in capillary endothelium   总被引:2,自引:0,他引:2  
Plasma proteins interact with vascular endothelium in such a way as to render it less permeable to other macromolecules. Evidence from a variety of sources indicates that this may result from interaction of the circulating macromolecules with the negatively charged glycoprotein layer on the surface of endothelial cells, and that this layer may be responsible for some of the known molecular sieving properties attributed to the endothelium. Experiments with the fluorocarbon exchange-transfused rat are described, which suggest that there may be mechanisms other than vesicular translocation that facilitate the passage of macromolecules across endothelium. Such mechanisms include, among others, the formation of transient transendothelial channels that appear to be less sensitive than pinocytotic vesicles to the concentration of ambient protein. Recent evidence suggests that, in addition to molecular size and charge, glycosylation of protein molecules and cell membranes themselves may facilitate vesicular uptake.  相似文献   

16.
Marwa M Hussein 《Protoplasma》2020,257(3):755-766
The present study intended to describe in detail the several blood vessels harboring special regulatory devices in rabbit’s pulmonary tissue using light and electron microscopy and immuno-histochemistry. Numerous throttle arteries were recorded within the adventitia of the segmental and sub-segmental bronchi and within pulmonary pleura. These arteries showed characteristic narrow or obliterated lumens and some of them bear longitudinal muscular intimal bolsters. For the first time, TEM revealed some structural modifications of the vascular endothelial cells of these arteries indicating that they become more activated to perform some additional functions. Arteriovenous anastomoses (AVAs) including direct shunt vessels and glomus organs were also recognized. Direct arteriovenous shunts appeared as small connecting devices communicating between small arteries and small veins while glomus organs consisted of the tortuous glomus vessels and the related afferent and efferent vessels. Several arteries and veins showing unique unusual structural characteristics were also described. For the first time, serotonin (5-HT) was strongly expressed in the vascular endothelium and muscle fibers of throttle arteries, in glomus cells of the glomus vessels, and in vascular endothelium of some veins and venules of special structure. The exact role of 5-HT is still unknown and further investigations are required to determine the types and distribution of 5-HT receptors present in these vascular devices. We concluded that these special vascular devices can play a critical role in controlling blood flow and pressure in the peripheral pulmonary circulation; however, the exact physiological mechanisms by which they work or are controlled remain unknown providing a ripe area for further investigation.  相似文献   

17.
It has been established that coronary vessels develop through self-assembly of mesenchymal vascular progenitors in the subepicardium. Mesenchymal precursors of vascular smooth muscle cells and fibroblasts are known to originate from an epithelial-to-mesenchymal transformation of the epicardial mesothelium, but the origin of the coronary endothelium is still obscure. We herein report that at least part of the population of the precursors of the coronary endothelium are epicardially-derived cells (EPDCs). We have performed an EPDC lineage study through retroviral and fluorescent labelling of the proepicardial and epicardial mesothelium of avian embryos. In all the experiments onlythe surface mesothelium was labelled after 3 h of reincubation. However, endothelial cells from subepicardial vessels were labelled after 24-48 h and endothelial cells of intramyocardial vessels were also labelled after 48-96 h of reincubation. In addition, the development of the coronary vessels was studied in quail-chick chimeras, obtaining results which also support a mesothelial origin for endothelial and smooth muscle cells. Finally, quail proepicardial explants cultured on Matrigel showed colocalization of cytokeratin and QH1 (mesothelial and endothelial markers, respectively) after 24 h. These results, taken together, suggest that EPDC show similar competence to that displayed by bipotential vascular progenitor cells [Yamashita et al., Nature 408: 92-96 (2000)] which are able to differentiate into endothelium or smooth muscle depending on their exposure to VEGF or PDGF-BB. It is conceivable that the earliest EPDC differentiate into endothelial cells in response to myocardially-secreted VEGF, while further EPDC would be recruited by the nascent capillaries via PDGFR-beta signalling, giving rise to mural cells.  相似文献   

18.
The expression of leukocyte adhesion molecules on lymphatic vessels of the human tongue was examined using histochemical and immunohistochemical methods. Three different types of lymphatic vessels were distinguished: type I vessels expressed intercellular adhesion molecule-1 (ICAM-1), platelet-endothelial cell adhesion molecule-1 (PECAM-1), and endothelial cell-selectin (ELAM-1); type II vessels expressed ICAM-1 and PECAM-1; and type III vessels expressed PECAM-1 only. The lymphatic vessels located very close to the oral epithelium (lymphatic capillaries) and the other lymphatic vessels near the oral epithelium were type I. The lymphatic vessels in the submucosal connective tissue (collecting lymphatic vessels) were type II and type III. The results suggest that there may be functional differences in the lymphatic endothelium, where lymphatic capillaries are more active than collecting lymphatic vessels in lymphocyte migration from tissue into the lymphatic vessels.  相似文献   

19.
The aim of this study was to investigate the effect of small alterations in extracellular magnesium concentration on the tone of feline mesenteric arteries and to examine the role of endothelium in these responses. We measured isometrical tension of isolated arterial rings, placed between two stainless steel wires in a tissue chamber containing Krebs-Henseleit solution, aerated with a gas mixture containing 95% O2 and 5% CO2 at 37 degrees C. After precontraction with noradrenaline, a decrease of extracellular magnesium concentration from 1.2 mM to 1.0 and 0.8 mM resulted in sustained relaxations, whereas the elevation of extracellular magnesium from 0.8 mM to 1.2 mM caused an increase in vascular tone when endothelium was intact. The magnesium-withdrawal related dilations were absent in endothelium-denuded vessels and were inhibited by oxyhemoglobin (5 x 10(-6) M) and methylene blue (10(-5) M), suggesting the involvement of endothelium-derived relaxing factor in this vascular response. Nifedipine (5 x 10(-7) M) or dichlorobenzamil (3 x 10(-5) M), however, did not affect the magnesium-deficiency related relaxations. Therefore, in this vascular action of magnesium, nifedipine-sensitive calcium channels or the sodium- calcium antiport system are not involved. We conclude that small alterations in extracellular magnesium concentration, possibly within the physiological range, are able to modify the basal formation and release of EDRF, and thus alter arterial smooth muscle tone in this vascular bed. This endothelium- and magnesium-dependent system appears to be more sensitive than the direct smooth muscle actions of magnesium. The possible physiological and pathophysiological consequences of these observations are discussed.  相似文献   

20.
The angioarchitecture of the gills in Myxine glutinosa L. was studied by scanning electron microscopy of vascular corrosion casts (methylmethacrylate). It was found that the afferent branchial artery may be connected to the sinus peribranchialis by a papilla. The sinus is connected to delicate vessels and sinuses, which are interposed between meridionally arranged radial arteries. These delicate vascular formations continue into the interior of the gill and form a plexus on both poles of the gill folds. Light and scanning electron microscopical studies on the vascular endothelium of the afferent vessels of the gill lamellae reveal rounded endothelial cells, which are characterized by a high content of granula, by long cellular processes and by bridge-formations towards neighbouring cells. Supporting columns within the vascular system of the lamellae were found to be set up by several spirally arranged cells. SEM observations reveal goblet cells and numerous superficial epithelial cells with various numbers of microvilli and microridges forming the epithelial surface of the gill folds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号