首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NH(2)-terminal somatomedin B (SMB) domain (residues 1-44) of human vitronectin contains eight Cys residues organized into four disulfide bonds and is required for the binding of type 1 plasminogen activator inhibitor (PAI-1). In the present study, we map the four disulfide bonds in recombinant SMB (rSMB) and evaluate their functional importance. Active rSMB was purified from transformed Escherichia coli by immunoaffinity chromatography using a monoclonal antibody that recognizes a conformational epitope in SMB (monoclonal antibody 153). Plasmon surface resonance (BIAcore) and competitive enzyme-linked immunosorbent assays demonstrate that the purified rSMB domain and intact urea-activated vitronectin have similar PAI-1 binding activities. The individual disulfide linkages present in active rSMB were investigated by CNBr cleavage, partial reduction and S-alkylation, mass spectrometry, and protein sequencing. Two pairs of disulfide bonds at the NH(2)-terminal portion of active rSMB were identified as Cys(5)-Cys(9) and Cys(19)-Cys(21). Selective reduction/S-alkylation of these two disulfide linkages caused the complete loss of PAI-1 binding activity. The other two pairs of disulfide bonds in the COOH-terminal portion of rSMB were identified as Cys(25)-Cys(31) and Cys(32)-Cys(39) by protease-generated peptide mapping of partially reduced and S-alkylated rSMB. These results suggest a linear uncrossed pattern for the disulfide bond topology of rSMB that is distinct from the crossed pattern present in most small disulfide bond-rich proteins.  相似文献   

2.
The N-terminal cysteine-rich somatomedin B (SMB) domain (residues 1-44) of the human glycoprotein vitronectin contains the high-affinity binding sites for plasminogen activator inhibitor-1 (PAI-1) and the urokinase receptor (uPAR). We previously showed that the eight cysteine residues of recombinant SMB (rSMB) are organized into four disulfide bonds in a linear uncrossed pattern (Cys(5)-Cys(9), Cys(19)-Cys(21), Cys(25)-Cys(31), and Cys(32)-Cys(39)). In the present study, we use an alternative method to show that this disulfide bond arrangement remains a major preferred one in solution, and we determine the solution structure of the domain using NMR analysis. The solution structure shows that the four disulfide bonds are tightly packed in the center of the domain, replacing the traditional hydrophobic core expected for a globular protein. The few noncysteine hydrophobic side chains form a cluster on the outside of the domain, providing a distinctive binding surface for the physiological partners PAI-1 and uPAR. The hydrophobic surface consists mainly of side chains from the loop formed by the Cys(25)-Cys(31) disulfide bond, and is surrounded by conserved acidic and basic side chains, which are likely to contribute to the specificity of the intermolecular interactions of this domain. Interestingly, the overall fold of the molecule is compatible with several arrangements of the disulfide bonds. A number of different disulfide bond arrangements were able to satisfy the NMR restraints, and an extensive series of conformational energy calculations performed in explicit solvent confirmed that several disulfide bond arrangements have comparable stabilization energies. An experimental demonstration of the presence of alternative disulfide conformations in active rSMB is provided by the behavior of a mutant in which Asn(14) is replaced by Met. This mutant has the same PAI-1 binding activity as rVN1-51, but its fragmentation pattern following cyanogen bromide treatment is incompatible with the linear uncrossed disulfide arrangement. These results suggest that active forms of the SMB domain may have a number of allowed disulfide bond arrangements as long as the Cys(25)-Cys(31) disulfide bond is preserved.  相似文献   

3.
Plasminogen activator inhibitor type-1 (PAI-1) is bound to vitronectin (VN) in plasma and in the extracellular matrix. We previously employed a domain-swapping approach to show that the high-affinity binding site for PAI-1 in VN is contained within residues 12-30 in the amino-terminal somatomedin B (SMB) domain. In this study, we attempt to further delineate the location of this site by employing a novel approach that is based on the use of monoclonal antibodies (Mabs) together with site-directed mutagenesis. Six separate Mabs were identified that bound to the SMB domain and competed with PAI-1 for binding to VN. The relative affinity of each of the Mabs, and of PAI-1 itself, for binding to individual variants of SMB (prepared by alanine scanning mutagenesis), was then determined and compared in competitive binding experiments. Three separate, partially overlapping Mab epitopes within SMB were defined by these studies, and the PAI-1 binding site was localized to the region between residues 24 and 37. When considered together with the domain swapping data, these studies suggest that the PAI-1 binding site is contained within a common seven-residue region (i.e., residues 24-30) in the SMB domain.  相似文献   

4.
The N-terminal 44 amino acid residues of the human plasma glycoprotein vitronectin, known as the somatomedin B (SMB) domain, mediates the interaction between vitronectin and plasminogen activator inhibitor 1 (PAI-1) in a variety of important biological processes. Despite the functional importance of the Cys-rich SMB domain, how its four disulfide bridges are arranged in the molecule remains highly controversial, as evidenced by three different disulfide connectivities reported by several laboratories. Using native chemical ligation and orthogonal protection of selected Cys residues, we chemically synthesized all three topological analogs of SMB with predefined disulfide connectivities corresponding to those previously published. In addition, we oxidatively folded a fully reduced SMB in aqueous solution, and prepared, by CNBr cleavage, the N-terminal segment of 51 amino acid residues of intact vitronectin purified from human blood. Proteolysis coupled with mass spectrometric analysis and functional characterization using a surface plasmon resonance based vitronectin-PAI-1-SMB competition assay allowed us to conclude that 1) only the Cys(5)-Cys(21), Cys(9)-Cys(39), Cys(19)-Cys(32), and Cys(25)-Cys(31) connectivity is present in native vitronectin; 2) only the native disulfide connectivity is functional; and 3) the native disulfide pairings can be readily formed during spontaneous (oxidative) folding of the SMB domain in vitro. Our results unequivocally define the native disulfide topology in the SMB domain of human vitronectin, providing biochemical as well as functional support to the structural findings on a recombinant SMB domain by Read and colleagues (Zhou, A., Huntington, J. A., Pannu, N. S., Carrell, R. W., and Read, R. J. (2003) Nat. Struct. Biol. 10, 541-544).  相似文献   

5.
《The Journal of cell biology》1996,134(6):1563-1571
Induction of the urokinase type plasminogen activator receptor (uPAR) promotes cell adhesion through its interaction with vitronectin (VN) in the extracellular matrix, and facilitates cell migration and invasion by localizing uPA to the cell surface. We provide evidence that this balance between cell adhesion and cell detachment is governed by PA inhibitor-1 (PAI-1). First, we demonstrate that uPAR and PAI-1 bind to the same site in VN (i.e., the amino-terminal somatomedin B domain; SMB), and that PAI-1 competes with uPAR for binding to SMB. Domain swapping and mutagenesis studies indicate that the uPAR-binding sequence is located within the central region of the SMB domain, a region previously shown to contain the PAI-1-binding motif. Second, we show that PAI-1 dissociates bound VN from uPAR and detaches U937 cells from their VN substratum. This PAI-1 mediated release of cells from VN appears to occur independently of its ability to function as a protease inhibitor, and may help to explain why high PAI-1 levels indicate a poor prognosis for many cancers. Finally, we show that uPA can rapidly reverse this effect of PAI-1. Taken together, these results suggest a dynamic regulatory role for PAI-1 and uPA in uPAR-mediated cell adhesion and release.  相似文献   

6.
Vitronectin and plasminogen activator inhibitor-1 (PAI-1) are proteins that interact in the circulatory system and pericellular region to regulate fibrinolysis, cell adhesion, and migration. The interactions between the two proteins have been attributed primarily to binding of the somatomedin B (SMB) domain, which comprises the N-terminal 44 residues of vitronectin, to the flexible joint region of PAI-1, including residues Arg-103, Met-112, and Gln-125 of PAI-1. A strategy for deletion mutagenesis that removes the SMB domain demonstrates that this mutant form of vitronectin retains PAI-1 binding (Schar, C. R., Blouse, G. E., Minor, K. M., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309). In the current study, the complementary binding site on PAI-1 was mapped by testing for the ability of a battery of PAI-1 mutants to bind to the engineered vitronectin lacking the SMB domain. This approach identified a second, separate site for interaction between vitronectin and PAI-1. The binding of PAI-1 to this site was defined by a set of mutations in PAI-1 distinct from the mutations that disrupt binding to the SMB domain. Using the mutations in PAI-1 to map the second site suggested interactions between alpha-helices D and E in PAI-1 and a site in vitronectin outside of the SMB domain. The affinity of this second interaction exhibited a K(D) value approximately 100-fold higher than that of the PAI-1-somatomedin B interaction. In contrast to the PAI-1-somatomedin B binding, the second interaction had almost the same affinity for active and latent PAI-1. We hypothesize that, together, the two sites form an extended binding area that may promote assembly of higher order vitronectin-PAI-1 complexes.  相似文献   

7.
Functional structure of the somatomedin B domain of vitronectin   总被引:1,自引:0,他引:1  
The N-terminal somatomedin B domain (SMB) of vitronectin binds PAI-1 and the urokinase receptor with high affinity and regulates tumor cell adhesion and migration. We have shown previously in the crystal structure of the PAI-1/SMB complex that SMB, a peptide of 51 residues, is folded as a compact cysteine knot of four pairs of crossed disulfide bonds. However, the physiological significance of this structure was questioned by other groups, who disputed the disulfide bonding shown in the crystal structure (Cys5-Cys21, Cys9-Cys39, Cys19-Cys32, Cys25-Cys31), notably claiming that the first disulfide is Cys5-Cys9 rather than the Cys5-Cys21 bonding shown in the structure. To test if the claimed Cys5-Cys9 bond does exist in the SMB domain of plasma vitronectin, we purified mouse and rat plasma vitronectin that have a Met (hence cleavable by cyanogen bromide) at residue 14, and also prepared recombinant human SMB variants from insect cells with residues Asn14 or Leu24 mutated to Met. HPLC and mass spectrometry analysis showed that, after cyanogen bromide digestion, all the fragments of the SMB derived from mouse or rat vitronectin or the recombinant SMB mutants are still linked together by disulfides, and the N-terminal peptide (residue 1-14 or 1-24) can only be released when the disulfide bonds are broken. This clearly demonstrates that Cys5 and Cys9 of SMB do not form a disulfide bond in vivo, and together with other structural evidence confirms that the only functional structure of the SMB domain of plasma vitronectin is that seen in its crystallographic complex with PAI-1.  相似文献   

8.
The cysteine-rich somatomedin B domain (SMB) of the matrix protein vitronectin is involved in several important biological processes. First, it stabilizes the active conformation of the plasminogen activator inhibitor (PAI-1); second, it provides the recognition motif for cell adhesion via the cognate integrins (alpha(v)beta(3), alpha(v)beta(5), and alpha(IIb)beta(3)); and third, it binds the complex between urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR). Previous structural studies on SMB have used recombinant protein expressed in Escherichia coli or SMB released from plasma-derived vitronectin by CNBr cleavage. However, different disulfide patterns and three-dimensional structures for SMB were reported. In the present study, we have expressed recombinant human SMB by two different eukaryotic expression systems, Pichia pastoris and Drosophila melanogaster S2-cells, both yielding structurally and functionally homogeneous protein preparations. Importantly, the entire population of our purified, recombinant SMB has a solvent exposure, both as a free domain and in complex with PAI-1, which is indistinguishable from that of plasma-derived SMB as assessed by amide hydrogen ((1)H/(2)H) exchange. This solvent exposure was only reproduced by one of three synthetic SMB products with predefined disulfide connectivities corresponding to those published previously. Furthermore, this connectivity was also the only one to yield a folded and functional domain. The NMR structure was determined for free SMB produced by Pichia and is largely consistent with that solved by X-ray crystallography for SMB in complex with PAI-1.  相似文献   

9.
Although the urokinase receptor (uPAR) binds to vitronectin (VN) and promotes the adhesion of cells to this matrix protein, the biochemical details of this interaction remain unclear. VN variants were employed in BIAcore experiments to examine the uPAR-VN interaction in detail and to compare it to the interaction of VN with other ligands. Heparin and plasminogen bound to VN fragments containing the heparin-binding domain, indicating that this domain was functionally active in the recombinant peptides. However, no significant binding was detected when uPAR was incubated with this domain, and neither heparin nor plasminogen competed with it for binding to VN. In fact, uPAR only bound to fragments containing the somatomedin B (SMB) domain, and monoclonal antibodies (mAbs) that bind to this domain competed with uPAR for binding to VN. Monoclonal antibody 8E6 also inhibited uPAR binding to VN, and this mAb was shown to recognize sulfated tyrosine residues 56 and 59 in the region adjacent to the SMB domain. Destruction of this site by acid treatment eliminated mAb 8E6 binding but had no effect on uPAR binding. Thus, there appears to be a single binding site for uPAR in VN, and it is located in the SMB domain and is distinct from the epitope recognized by mAb 8E6. Inhibition of uPAR binding to VN by mAb 8E6 probably results from steric hindrance.  相似文献   

10.
Plasminogen activator inhibitor-1 (PAI-1) binds to the somatomedin B (SMB) domain of vitronectin. It inhibits the adhesion of U937 cells to vitronectin by competing with the urokinase receptor (uPAR; CD87) on these cells for binding to the same domain. Although the inhibitor also blocks integrin-mediated cell adhesion, the molecular basis of this effect is unclear. In this study, the effect of the inhibitor on the adhesion of a variety of cells (e.g., U937, MCF7, HT-1080, and HeLa) to vitronectin was assessed, and the importance of the SMB domain in these interactions was determined. Although PAI-1 blocked the adhesion of all of these cells to vitronectin-coated wells, it did not block adhesion to a variant of vitronectin which lacked the SMB domain. Interestingly, HT-1080 and U937 cells attached avidly to microtiter wells coated with purified recombinant SMB (which does not contain the RGD sequence), and this adhesion was again blocked by the inhibitor. These results affirm that PAI-1 can inhibit both uPAR- and integrin-mediated cell adhesion, and demonstrate that the SMB domain of vitronectin is required for these effects. They also show that multiple cell types can employ uPAR as an adhesion receptor. The use of purified recombinant SMB should help to further define this novel adhesive pathway, and to delineate its relationship with integrin-mediated adhesive events.  相似文献   

11.
The three-dimensional structure of an N-terminal fragment comprising the first 51 amino acids from human plasma vitronectin, the somatomedin B (SMB) domain, has been determined by two-dimensional NMR approaches. An average structure was calculated, representing the overall fold from a set of 20 minimized structures. The core residues (18-41) overlay with a root mean square deviation of 2.29 +/- 0.62 A. The N- and C-terminal segments exhibit higher root mean square deviations, reflecting more flexibility in solution and/or fewer long-range NOEs for these regions. Residues 26-30 form a unique single-turn alpha-helix, the locus where plasminogen activator inhibitor type-1 (PAI-1) is bound. This structure of this helix is highly homologous with that of a recombinant SMB domain solved in a co-crystal with PAI-1 (Zhou, A., Huntington, J. A., Pannu, N. S., Carrell, R. W., and Read, R. J. (2003) Nat. Struct. Biol. 10, 541-544), although the remainder of the structure differs. Significantly, the pattern of disulfide cross-links observed in this material isolated from human plasma is altogether different from the disulfides proposed for recombinant forms. The NMR structure reveals the relative orientation of binding sites for cell surface receptors, including an integrin-binding site at residues 45-47, which was disordered and did not diffract in the co-crystal, and a site for the urokinase receptor, which overlaps with the PAI-1-binding site.  相似文献   

12.
The Plasmodium falciparum cysteine protease falcipain-2 is a trophozoite hemoglobinase and potential antimalarial drug target. Unlike other studied papain family proteases, falcipain-2 does not require its prodomain for folding to active enzyme. Rather, folding is mediated by an amino-terminal extension of the mature protease. As in related enzymes, the prodomain is a potent inhibitor of falcipain-2. We now report further functional evaluation of the domains of falcipain-2 and related plasmodial proteases. The minimum requirement for folding of falcipain-2 and four related plasmodial cysteine proteases was inclusion of a 14-15-residue amino-terminal folding domain, beginning with a conserved Tyr. Chimeras of the falcipain-2 catalytic domain with extensions from six other plasmodial proteases folded normally and had kinetic parameters (k(cat)/K(m) 124,000-195,000 M(-1) s(-1)) similar to those of recombinant falcipain-2 (k(cat)/K(m) 120,000 M(-1) s(-1)), indicating that the folding domain is functionally conserved across the falcipain-2 subfamily. Correct folding also occurred when the catalytic domain was refolded with a separate prodomain-folding domain construct but not with an isolated folding domain peptide. Thus, the prodomain mediated interaction between the other two domains when they were not covalently bound. The prodomain-catalytic domain interaction was independent of the active site, because it was blocked by free inactive catalytic domain but not by the active site-binding peptide leupeptin. The folded catalytic domain retained activity after purification from the prodomain-folding domain construct (k(cat)/K(m) 168,000 M(-1) s(-1)), indicating that the folding domain is not required for activity once folding has been achieved. Activity was lost after nonreducing gelatin SDS-PAGE but not native gelatin PAGE, indicating that correct disulfide bonds are insufficient to direct appropriate folding. Our results identify unique features of the falcipain-2 subfamily with independent mediation of activity, folding, and inhibition.  相似文献   

13.
The inactivation of plasminogen activator inhibitor-1 (PAI-1) by the small molecule PAI-1 inhibitor PAI-039 (tiplaxtinin) has been investigated using enzymatic analysis, direct binding studies, site-directed mutagenesis, and molecular modeling studies. Previously PAI-039 has been shown to exhibit in vivo activity in various animal models, but the mechanism of inhibition is unknown. PAI-039 bound specifically to the active conformation of PAI-1 and exhibited reversible inactivation of PAI-1 in vitro. SDS-PAGE indicated that PAI-039 inactivated PAI-1 predominantly through induction of PAI-1 substrate behavior. Preincubation of PAI-1 with vitronectin, but not bovine serum albumin, blocked PAI-039 activity while analysis of the reciprocal experiment demonstrated that preincubation of PAI-1 with PAI-039 blocked the binding of PAI-1 to vitronectin. Together, these data suggest that the site of interaction of the drug on PAI-1 is inaccessible when PAI-1 is bound to vitronectin and may overlap with the PAI-1 vitronectin binding domain. This was confirmed by site-directed mutagenesis and molecular modeling studies, which suggest that the binding epitope for PAI-039 is localized adjacent to the previously identified interaction site for vitronectin. Thus, these studies provide a detailed characterization of the mechanism of inhibition of PAI-1 by PAI-039 against free, but not vitronectin-bound PAI-1, suggesting for the first time a novel pool of PAI-1 exists that is vulnerable to inhibition by inactivators that bind at the vitronectin binding site.  相似文献   

14.
The lectin-like oxidized low-density lipoprotein scavenger receptor (LOX-1) is a pro-inflammatory marker and Type II membrane protein expressed on vascular cells and tissues. The LOX-1 extracellular domain mediates recognition of oxidized low-density lipoprotein (oxLDL) particles that are implicated in the development of atherosclerotic plaques. To study the molecular basis for LOX-1-mediated ligand recognition, we have expressed, purified and refolded a recombinant LOX-1 protein and assayed for its biological activity using a novel fluorescence-based assay to monitor binding to lipid particles. Overexpression of a hexahistidine-tagged cysteine-rich LOX-1 extracellular domain in bacteria leads to the formation of aggregates that accumulated in bacterial inclusion bodies. The hexahistidine-tagged LOX-1 molecule was purified by affinity chromatography from solubilized inclusion bodies. A sequential dialysis procedure was used to refold the purified but inactive and denatured LOX-1 protein into a functionally active form that mediated recognition of oxLDL particles. This approach allowed slow LOX-1 refolding and assembly of correct intrachain disulfide bonds. Circular dichroism analysis of the refolded LOX-1 molecule demonstrated a folded state with substantial alpha-helical content. Using immobilized recombinant, refolded LOX-1 we demonstrated a 70-fold preferential recognition for oxLDL over native LDL particles. Thus, a protein domain containing intrachain disulfide bonds can be reconstituted into a functionally active state using a relatively simple dialysis-based technique.  相似文献   

15.
The interaction between guanidine-activated bovine type 1 plasminogen activator inhibitor (PAI-1) and bovine vitronectin was investigated. Activated PAI-1 bound to vitronectin in a dose- and time-dependent manner, and binding was saturable. The dissociation constant (Kd) for this interaction was estimated to be 3.10(-10) mol/l by Scatchard analysis. Complexes of activated PAI-1 and vitronectin were relatively stable at 4 degrees C (T1/2 greater than 24 h), but dissociated with a T1/2 of 4 h at 37 degrees C. The half-life of PAI-1 activity was increased from 2.5 to 4.5 h upon binding to immobilized vitronectin. In order to identify the binding domain(s) in vitronectin for activated PAI-1, the ability of PAI-1 to bind to vitronectin fragments was assessed. Vitronectin was cleaved by thrombin in a dose- and time-dependent manner, generating fragments of Mr 60,000, 54,000 and 38,000. The PAI-1 binding domain(s) were not destroyed by this treatment, since the digested vitronectin competed with immobilized vitronectin for PAI-1 binding to the same extent as uncleaved vitronectin. The thrombin digested vitronectin fragments were fractionated by SDS-PAGE and analyzed by PAI-1 ligand binding. The smallest fragment (Mr 38,000) retained PAI-1 binding function, and sequence analysis demonstrated that this fragment contained the NH2-terminus of bovine vitronectin. These results suggest that the high-affinity binding site for activated PAI-1 is located in the NH2-terminal region of the bovine vitronectin molecule.  相似文献   

16.
Bacterial ribosomes or their 50S subunit can refold many unfolded proteins. The folding activity resides in domain V of 23S RNA of the 50S subunit. Here we show that ribosomes can also refold a denatured chaperone, DnaK, in vitro, and the activity may apply in the folding of nascent DnaK polypeptides in vivo. The chaperone was unusual as the native protein associated with the 50S subunit stably with a 1:1 stoichiometry in vitro. The binding site of the native protein appears to be different from the domain V of 23S RNA, the region with which denatured proteins interact. The DnaK binding influenced the protein folding activity of domain V modestly. Conversely, denatured protein binding to domain V led to dissociation of the native chaperone from the 50S subunit. DnaK thus appears to depend on ribosomes for its own folding, and upon folding, can rebind to ribosome to modulate its general protein folding activity.  相似文献   

17.
Protein folding and quality control in the endoplasmic reticulum are critical processes for which our current understanding is far from complete. Here we describe the functional characterization of a new human 27.7-kDa protein (ERp27). We show that ERp27 is a two-domain protein located in the endoplasmic reticulum that is homologous to the non-catalytic b and b' domains of protein disulfide isomerase. ERp27 was shown to bind Delta-somatostatin, the standard test peptide for protein disulfide isomerase-substrate binding, and this ability was localized to the second domain of ERp27. An alignment of human ERp27 and human protein disulfide isomerase allowed for the putative identification of the peptide binding site of ERp27 indicating conservation of the location of the primary substrate binding site within the protein disulfide isomerase family. NMR studies revealed a significant conformational change in the b'-like domain of ERp27 upon substrate binding, which was not just localized to the substrate binding site. In addition, we report that ERp27 is bound by ERp57 both in vitro and in vivo by a similar mechanism by which ERp57 binds calreticulin.  相似文献   

18.
The role of the urokinase receptor (uPAR) in the internalization of the urokinase-plasminogen activator inhibitor type-1 (uPA.PAI-1) complex has been investigated. First, exploiting the species specificity of uPA binding, we show that mouse LB6 cells (that express a mouse uPAR) were unable to bind or degrade the human uPA.PAI-1 complex. On the other hand, LB6 clone 19 cells, which express a transfected human uPAR, degraded uPA.PAI-1 complexes with kinetics identical to the human monocytic U937 cells. We also show by immunofluorescence experiments with anti-uPA antibodies that in LB6 clone 19 cells, the uPA.PAI-1 complex is indeed internalized. While at 4 degrees C uPA fluorescence was visible at the cell surface, shift of the temperature to 37 degrees C caused a displacement of the immunoreactivity to the cytoplasmic compartment, with a pattern indicating lysosomal localization. If uPA.PAI-1 internalization/degradation is mediated by uPAR, inhibition of uPA.PAI-1 binding to uPAR should block degradation. Three different treatments, competition with the agonist amino-terminal fragment of uPA, treatment with a monoclonal antibody directed toward the binding domain of uPAR or release of uPAR from the cell surface with phosphatidylinositol-specific phospholipase C completely prevented uPA.PAI-1 degradation. The possibility that a serpin-enzyme complex receptor might be primarily or secondarily involved in the internalization process was excluded since a serpin-enzyme complex peptide failed to inhibit uPA.PAI-1 binding and degradation. Similarly, complexes of PAI-1 with low molecular mass uPA (33 kDa uPA), which lacks the uPAR binding domain, were neither bound nor degraded. Finally we also show that treatment of cells with uPA.PAI-1 complex caused a specific but partial down-regulation of uPAR. A similar result was obtained when PAI-1 was allowed to complex to uPA that had been previously bound to the receptor. The possibility therefore exists that the entire complex uPA.PAI-1-uPAR is internalized. All these data allow us to conclude that internalization of the uPA.PAI-1 complex is mediated by uPAR.  相似文献   

19.
Oxidative protein folding in the periplasm of Escherichia coli is catalyzed by the thiol-disulfide oxidoreductases DsbA and DsbC. We investigated the catalytic efficiency of these enzymes during folding of proteins with a very complex disulfide pattern in vivo and in vitro, using the Ragi bifunctional inhibitor (RBI) as model substrate. RBI is a 13.1 kDa protein with five overlapping disulfide bonds. We show that reduced RBI can be refolded quantitatively in glutathione redox buffers in vitro and spontaneously adopts the single correct conformation out of 750 possible species with five disulfide bonds. Under oxidizing redox conditions, however, RBI folding is hampered by accumulation of a large number of intermediates with non-native disulfide bonds, while a surprisingly low number of intermediates accumulates under optimal or reducing redox conditions. DsbC catalyzes folding of RBI under all redox conditions in vitro, but is particularly efficient in rearranging buried, non-native disulfide bonds formed under oxidizing conditions. In contrast, the influence of DsbA on the refolding reaction is essentially restricted to reducing redox conditions where disulfide formation is rate limiting. The effects of DsbA and DsbC on folding of RBI in E.coli are very similar to those observed in vitro. Whereas overexpression of DsbA has no effect on the amount of correctly folded RBI, co-expression of DsbC enhanced the efficiency of RBI folding in the periplasm of E.coli about 14-fold. Addition of reduced glutathione to the growth medium together with DsbC overexpression further increased the folding yield of RBI in vivo to 26-fold. This shows that DsbC is the bacterial enzyme of choice for improving the periplasmic folding yields of proteins with very complex disulfide bond patterns.  相似文献   

20.
To investigate the role of the A20-B19 disulfide bond in the structure, activity and folding of proinsulin, a human proinsulin (HPI) mutant [A20, B19Ala]-HPI was prepared. This mutant, together with another proinsulin mutant previously constructed with an A19Tyr deletion, which can also be taken as shifted mutant of the A20-B19 disulfide bond, were studied for their in vitro refolding, oxidation of free thiol groups, circular dichroism spectra, antibody and receptor binding activities and sensitivity to trypsin digestion in comparison with native proinsulin. The results indicate that deletion of the A20-B19 disulfide bond results in a large decrease in the alpha-helix content of the molecule and higher sensitivity to tryptic digestion. Both the deletion and shift mutations, especially the latter, cause a great decrease in the biological activity of proinsulin analogues. The folding yields of HPI analogues were much lower than that of HPI. And the shift mutant, [Delta A19Tyr]-HPI, was scarcely refolded correctly in vitro and its refolding yield was extremely low. These results suggest that the A20-B19 disulfide bond plays an important role in the structural stabilization and folding of the insulin precursor. By summarizing the refolding studies on proinsulin, a possible folding pathway is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号