首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
The effect of the nucleophilic reagent NaF on the microtubular system of Tetrahymena was studied by using scanning electron microscopy (SEM), confocal microscopy, and flow cytometry. Treatments with 40 mM NaF significantly reduced the amount of alpha-tubulin while 80 mM treatment did not alter its quantity. One possible explanation for this alpha-tubulin overexpression is that the higher amount of alpha-tubulin enables this organism to carry out the appropriate function of the cytoskeleton under this undesirable influence of higher amounts of 80 nM NaF. However, the amount of acetylated tubulin increased in a dose-dependent manner. The cilia became fragile under the effect of 80 mM NaF. Confocal microscopy revealed that after 40 mM NaF treatment transversal microtubule bands (TMs) and longitudinal microtubule bands (LMs) as well as basal bodies (BBs) were extremely strong decorated with anti-acetylated tubulin antibody and TM-localization abnormalities were visible. In the 80 mM NaF-treated cells, the deep fiber of oral apparatus was very strongly labeled, while the TMs and LMs were less decorated with anti-acetylated tubulin antibody, and LM deformities were visible. It is supposed that post-translational tubulin modifications (e.g., acetylation) defend the microtubules against the NaF-induced injury. NaF is able to influence the activity of several enzymes and G-proteins, therefore is capable to alter the structure, metabolism, and the dynamics of microtubular system. The possible connection of signaling and cytoskeletal system in Tetrahymena is discussed.  相似文献   

3.
目的:探讨不同浓度组蛋白去乙酰化酶抑制剂TSA对结肠癌HT29细胞的增殖、凋亡和自噬影响及其机制研究。方法:取对数生长期人结肠癌HT29细胞,采用MTT法检测不同浓度TSA处理对其细胞活力影响,并根据IC50值确定适宜给药浓度;采用流式细胞术检测不同浓度TSA处理后结肠癌HT29细胞的凋亡情况;Western blot验证空白对照组与TSA给药处理组中凋亡标志蛋白Ku70、acetrl-Ku70、Caspase3、Bax、Bcl-2和自噬标志蛋白LC3和Beclin1的表达。结果:MTT法实验结果表明TSA对结肠癌HT29细胞具有时间和浓度依赖性抑制作用,根据IC50=1.12μM,本研究中TSA的给药浓度为0.5μM和1μM;流式细胞凋亡检测结果表明TSA能够显著促进结肠癌HT29细胞凋亡,且其促凋亡作用存在浓度依赖性;此外,Western blot检测结果证实,与空白对照组相比,TSA给药处理可显著上调上述细胞中acetrl-Ku70以及促凋亡蛋白Caspase3、Bax和自噬标志蛋白LC3和Beclin1的表达,下调抗凋亡蛋白Bcl-2的表达(P<0.05)。结论:组蛋白去乙酰化酶抑制剂(TSA)的体外抗结肠癌细胞的增殖、促进细胞凋亡和自噬作用与其上调Ku70蛋白乙酰化密切相关,有望成为临床潜在抗癌靶点。  相似文献   

4.
5.
Affinity isolation of protein serine/threonine phosphatases on the immobilized phosphatase inhibitor microcystin-LR identified histone deacetylase 1(HDAC1), HDAC6, and HDAC10 as novel components of cellular phosphatase complexes. Other HDACs, specifically HDAC2, -3, -4, and -5, were excluded from such complexes. In vitro biochemical studies showed that recombinant HDAC6, but not HDAC4, bound directly to the protein phosphatase (PP)1 catalytic subunit. No association was observed between HDAC6 and PP2A, another major protein phosphatase. PP1 binding was mapped to the second catalytic domain and adjacent C-terminal sequences in HDAC6, and treatment of cells with trichostatin A (TSA) disrupted endogenous HDAC6.PP1 complexes. Consistent with the inhibition of tubulin deactylase activity of HDAC6, TSA enhanced cellular tubulin acetylation, and acetylated tubulin was present in the PP1 complexes from TSA-treated cells. Trapoxin B, a weak HDAC6 inhibitor, and calyculin A, a cell-permeable phosphatase inhibitor, had no effect on the stability of the HDAC6.PP1 complexes or on tubulin acetylation. Mutations that inactivated HDAC6 prevented its incorporation into cellular PP1 complexes and suggested that when bound together both enzymes were active. Interestingly, TSA disrupted all the cellular HDAC.phosphatase complexes analyzed. This study provided new insight into the mechanism by which HDAC inhibitors elicited coordinate changes in cellular protein phosphorylation and acetylation and suggested that changes in these protein modifications at multiple subcellular sites may contribute to the known ability of HDAC inhibitors to suppress cell growth and transformation.  相似文献   

6.
We investigated the effects of agents that induce reelin mRNA expression in vitro on the methylation status of the human reelin promoter in neural progenitor cells (NT2). NT2 cells were treated with the histone deacetylase inhibitors, trichostatin A (TSA) and valproic acid (VPA), and the methylation inhibitor aza-2'-deoxycytidine (AZA) for various times. All three drugs reduced the methylation profile of the reelin promoter relative to untreated cells. The acetylation status of histones H3 and H4 increased following treatment with VPA and TSA at times as short as 15 min following treatment; a result consistent with the reported mode of action of these drugs. Chromatin immunoprecipitation experiments showed that these changes were accompanied by changes occurring at the level of the reelin promoter as well. Interestingly, AZA decreased reelin promoter methylation without concomittantly increasing histone acetylation. In fact, after prolonged treatments with AZA, the acetylation status of histones H3 and H4 decreased relative to untreated cells. We also observed a trend towards reduced methylated H3 after 18 h treatment with TSA and VPA. Our data indicate that while TSA and VPA act to increase histone acetylation and reduce promoter methylation, AZA acts only to decrease the amount of reelin promoter methylation.  相似文献   

7.
Trichostatin A(TSA)是一种特异的组蛋白去乙酰化酶抑制剂。研究显示,TSA可以特异地抑制组蛋白去乙酰化酶活性,提高细胞的组蛋白乙酰化水平,激活基因的表达。但是,目前还不是很清楚TSA处理是否对组蛋白甲基化产生影响。本研究以成纤维细胞为研究对象,利用免疫细胞化学技术及激光共聚焦显微镜,探讨了TSA处理体细胞对其组蛋白乙酰化及甲基化修饰的影响。结果显示,随TSA浓度增加,体细胞形态发生明显的改变,细胞变得扁平且核区较大,处理后组蛋白H4K8位点的乙酰化水平随着TSA浓度的增加明显提高。检测组蛋白H3上两个甲基化位点发现,随组蛋白乙酰化水平的增加,H3K4位点的三甲基化(H3K4me3)水平也显著提高。但是,对于H3K9的二甲基化水平(H3K9me2)则没有明显变化。以上结果显示,TSA的处理不仅可以提高体细胞的组蛋白乙酰化水平,同时也增加了与基因表达激活相关组蛋白修饰位点的甲基化水平,但是对于与沉默基因相关的组蛋白修饰位点则没有明显的影响。  相似文献   

8.
9.
10.
11.
Wang F  Kou Z  Zhang Y  Gao S 《Biology of reproduction》2007,77(6):1007-1016
Epigenetic reprogramming is thought to play an important role in the development of cloned embryos reconstructed by somatic cell nuclear transfer (SCNT). In the present study, dynamic reprogramming of histone acetylation and methylation modifications was investigated in the first cell cycle of cloned embryos. Our results demonstrated that part of somatic inherited lysine acetylation on core histones (H3K9, H3K14, H4K16) could be quickly deacetylated following SCNT, and reacetylation occurred following activation treatment. However, acetylation marks of the other lysine residues on core histones (H4K8, H4K12) persisted in the genome of cloned embryos with only mild deacetylation occurring in the process of SCNT and activation treatment. The somatic cloned embryos established histone acetylation modifications resembling those in normal embryos produced by intracytoplasmic sperm injection through these two different programs. Moreover, treatment of cloned embryos with a histone deacetylase inhibitor, Trichostatin A (TSA), improved the histone acetylation in a manner similar to that in normal embryos, and the improved histone acetylation in cloned embryos treated with TSA might contribute to improved development of TSA-treated clones. In contrast to the asymmetric histone H3K9 tri- and dimethylation present in the parental genomes of fertilized embryos, the tri- and dimethylations of H3K9 were gradually demethylated in the cloned embryos, and this histone H3K9 demethylation may be crucial for gene activation of cloned embryos. Together, our results indicate that dynamic reprogramming of histone acetylation and methylation modifications in cloned embryos is developmentally regulated.  相似文献   

12.
Epigenetic modification influences reprogramming and subsequent development of somatic cell nuclear transfer (SCNT) embryos. Such modification includes an increase in histone acetylation. Histone deacetylase inhibitors (HDACi), such as trichostatin A (TSA) and valproic acid (VPA), have been known to maintain a high cellular level of histone acetylation. Hence, treatment of nuclear transfer embryos with HDACi may increase the efficiency of cloning. The present study attempted direct comparison of TSA and VPA with regard to the potency of enhancement of in vitro development in porcine SCNT embryos. Reconstructed oocytes using fetal fibroblasts were cultured in PZM-3 containing no HDACi (control), 5 mM VPA, or 50 nM TSA for 24 h, and another 5 d thereafter without HDACi. The frequency of blastocyst formation was significantly higher (P<0.05) in embryos treated with VPA than the frequencies with TSA and without HDACi (125/306, 40.8% vs. 94/313, 30.2% vs. 80/329, 23.4%). In addition, VPA treatment significantly increased (P<0.05) the number of inner cell mass (ICM) cells compared with the control (15.6 ± 1.7 vs. 10.8 ± 2.6), whereas no differences were observed between the TSA treatment and control groups (12.9 ± 3.0 vs. 10.8 ± 2.6). The present study demonstrates that VPA enhances in vitro development of porcine SCNT embryos, particularly by an increase in blastocyst formation and in the number of ICM cells, suggesting that VPA may be more potent than TSA in supporting developmental competence of cloned embryos.  相似文献   

13.
H-rev107 is downregulated in many carcinomas and tumor cell lines. Using postconfluent NIH3T3 cells, we demonstrated that growth arrest caused by contact inhibition, but not serum deprivation, increased H-rev107 expression. Furthermore, histone deacetylase inhibitors induced H-rev107 expression in NIH3T3 cells and allowed its reexpression in H-rev107-deficient WEHI 7.1 lymphoma cells. In contrast, no effect of the postconfluent stage or histone deacetylase inhibitors on H-rev107 levels was observed in tumorigenic H-rev107-expressing cell lines, HepG2, HeLa, and SKBR3. Transfections showed that TSA treatment increased luciferase activity 20-fold in NIH3T3 cells. We found that the GC-box at -83/-75 is a key element for H-rev107 induction by TSA and growth arrest, although there were no changes in the pattern and intensity of Sp1/Sp3-binding after induction. These data suggest that contact inhibition of growth and growth arrest caused by histone deacetylase inhibitors probably use the same mechanism to stimulate H-rev107 expression via histone acetylation in NIH3T3 cells and this might contribute to the development of drugs that can induce H-rev107 expression in certain tumors.  相似文献   

14.
15.
目的:探讨大鼠C6胶质瘤细胞中gdnf基因高转录与其启动子Ⅰ区组蛋白乙酰化的关系。方法:应用Real-time PCR和ChIP-PCR技术分别检测了大鼠正常星形胶质细胞和C6胶质瘤细胞中gdnf基因mRNA的表达水平以及其启动子Ⅰ区组蛋白H3K9的乙酰化程度;利用Real-time PCR技术,检测了不同浓度的组蛋白乙酰基转移酶抑制剂姜黄素(Curcumin)或去乙酰化酶抑制剂曲古抑菌素A(TSA)处理对C6胶质瘤细胞中gdnf基因mRNA表达的影响。结果:较之正常星形胶质细胞,C6胶质瘤细胞中gdnf基因mRNA的表达量极显著增高(P0.01),并且其启动子Ⅰ区H3K9的乙酰化水平也显著升高(P0.05)。C6胶质瘤细胞经Curcumin处理24 h后,gdnf基因mRNA的表达量随药物浓度的升高而降低,且100μmol/L作用浓度时其表达量下降了74.17%(P0.001);相反,TSA处理后gdnf基因mRNA的表达量呈上升趋势,且200nmol/L组其表达量约上升145.35%(P0.05)。结论:在大鼠C6胶质瘤细胞中gdnf基因启动子Ⅰ区H3K9发生了高乙酰化修饰,这种修饰可能是其高转录的原因。  相似文献   

16.
MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.  相似文献   

17.
Volvox carteri f. nagariensis (Iyengar) possesses several thousand cells of just two types, gonida and somatic cells, that are set apart by asymmetric cell division. Because the division apparatus contains microtubules enriched in acetylated α‐tubulin, we wished to know whether acetylated tubulin plays any role in regulating division symmetry. Two different human histone deacetylases (HDACs) have been shown to deacetylate tubulin in vivo, thereby regulating cell motility. Here we set out to determine: (1) whether HDAC inhibitors that increase tubulin acetylation in animal cells have the same effect in V. carteri, (2) whether increasing acetylated tubulin affects microtubule stability, and (3) whether increasing acetylated tubulin affects division symmetry. Embryos exposed to two HDAC inhibitors, trichostatin A (TSA) and tubacin, accrued dramatically higher levels of acetylated tubulin (and more acetylated microtubules) and were significantly more sensitive to colchicine than controls. However, while TSA‐treated embryos cleaved aberrantly to produce adults with abnormal morphology, tubacin‐treated embryos developed normally. We conclude that increasing tubulin acetylation subtly alters microtubule stability, but does not appear to affect cell division in V. carteri.  相似文献   

18.
核小体是真核生物染色质的基本单位,通过对组蛋白核心的N-端的乙酰化、甲基化、磷酸化、遍在蛋白化的修饰作用而影响细胞的功能。组蛋白乙酰化酶(histone acetylase HAT)及组蛋白去乙酰化酶(Histone Deacetylases HDAC)之间的动态平衡控制着染色质的结构和基因表达。当组蛋白去乙酰化水平增加,乙酰化水平相对降低,即会导致正常的细胞周期与代谢行为的改变而诱发肿瘤,及神经退行性变。组蛋白去乙酰化酶抑制剂(Histone Deacetylases-inhibitor HDACi)目前是国内外研究的热点。其中,曲古霉素A(Trichostatin A TSA),是最早发现的天然组蛋白去乙酰化酶抑制剂;伏立诺他(Suberoylanilide Hydroxamic Acid SAHA)已经美国FDA批准用于治疗皮肤T细胞淋巴瘤。本文就HDACi分类及其功能出发综述HDACi的作用机制及研究进展。  相似文献   

19.
Although histone deacetylase (HDAC) inhibitors are emerging as a promising new treatment strategy in malignancy, how they exert their effect on osteosarcoama cells is as yet unclear. This study was undertaken to investigate the underlying mechanism of a HDAC inhibitor Trichostatin A (TSA)-induced apoptosis in a osteosarcoma cell line HOS. We observed that TSA treatment decreased the viability of the cells and prominently increased acetylation of histone H3. Evidence was obtained indicating that TSA induced apoptosis of HOS cells as follows: (1) Generation of DNA fragmentation; (2) activation of procaspase-3; (3) cleavage of PARP; and (4) increase of DNA hypoploidy. The reduction of MMP and the release of cytochrome c to cytosol were also shown, indicating that TSA induces apoptosis in HOS cells in a histone acetylation- and mitochondria-dependent fashions. We also examined whether TSA can sensitize HOS cells to the action of an antitumor agent genistein. The combination therapy of TSA and genistein showed synergistic anticancer effect indicating that TSA can be considered as a novel therapeutic strategy for osteosarcoma not only from its direct apoptosis-inducing activity but also from the possibility of sensitization to other antitumor agents.  相似文献   

20.
Aging can be defined as time-dependent, gradual anddetrimental changes in the structure and physiologicalfunction of an organism, ultimately leading to death [1].Factors influencing the aging process would change thelongevity. In Drosophila melanogaster, …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号