首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na+,K(+)-ATPase concentration in rat cerebral cortex was studied by vanadate-facilitated [3H]ouabain binding to intact samples and by K(+)-dependent 3-O-methylfluorescein phosphatase activity determinations in crude homogenates. Methodological errors of both methods were evaluated. [3H]Ouabain binding to cerebral cortex obtained from 12-week-old rats measured incubating samples in buffer containing [3H]ouabain, and ouabain at a final concentration of 1 x 10(-6) mol/L gave a value of 11,351 +/- 177 (n = 5) pmol/g wet weight (mean +/- SEM) without any significant variation between the lobes. Evaluation of affinity for ouabain was in agreement with a heterogeneous population of [3H]ouabain binding sites. K(+)-dependent 3-O-methylfluorescein phosphatase activity in crude cerebral homogenates of age-matched rats was 7.24 +/- 0.14 (n = 5) mumol/min/g wet weight, corresponding to a Na+,K(+)-ATPase concentration of 12,209 +/- 236 pmol/g wet weight. It was concluded that the present methods were suitable for quantitative studies of cerebral cortex Na+,K(+)-ATPase. The concentration of rat cerebral cortex Na+,K(+)-ATPase showed approximately 10-fold increase within the first 4 weeks of life to reach a plateau of approximately 11,000-12,000 pmol/g wet weight, indicating a larger synthesis of Na+,K+ pumps than tissue mass in rat cerebral cortex during the first 4 weeks of development. K+ depletion induced by K(+)-deficient fodder for 2 weeks resulted in a slight tendency toward a reduction in K+ content (6%, p > 0.5) and Na+,K(+)-ATPase concentration (3%, p > 0.4) in cerebral cortex, whereas soleus muscle K+ content and Na+,K(+)-ATPase concentration were decreased by 30 (p < 0.02) and 32% (p < 0.001), respectively. Hence, during K+ depletion, cerebral cortex can maintain almost normal K+ homeostasis, whereas K+ as well as Na+,K+ pumps are lost from skeletal muscles.  相似文献   

2.
The isotopic discrimination, diastereotopic specificity and intramolecular hydrogen transfer characterizing the reaction catalyzed by phosphomannoisomerase are examined. During the monodirectional conversion of D-[2-3H]mannose 6-phosphate to D-fructose 6-phosphate and D-fructose 1,6-bisphosphate, the reaction velocity is one order of magnitude lower than with D-[U-14C]mannose 6-phosphate and little tritium (less than 6%) is transferred intramolecularly. Inorganic phosphate decreases the reaction velocity but favours the intramolecular transfer of tritium. Likewise, when D-[1-3H]fructose 6-phosphate prepared from D-[1-3H]glucose is exposed solely to phosphomannoisomerase, the generation of tritiated metabolites is virtually restricted to 3H2O and occurs at a much lower rate than the production of D-[U-14C]mannose 6-phosphate from D-[U-14C]fructose 6-phosphate. However, no 3H2O is formed when D-[1-3H]fructose 6-phosphate generated from D-[2-3H]glucose is exposed to phosphomannoisomerase, indicating that the diastereotopic specificity of the latter enzyme represents a mirror image of that of phosphoglucoisomerase. Advantage is taken of such a contrasting enzymic behaviour to assess the back-and-forth flow through the reaction catalyzed by phosphomannoisomerase in intact cells exposed to D-[1-3H]glucose, D-[5-3H]glucose or D-[6-3H]glucose. Relative to the rate of glycolysis, this back-and-forth flow amounted to approx. 4% in human erythrocytes and rat parotid cells, 9% in tumoral cells of the RINm5F line and 47% in rat pancreatic islets.  相似文献   

3.
Ribosomal protein phosphorylation was investigated in isolated ribosomal subunits and polyribosomes from rat cerebral cortex in the presence of [gamma-32P]ATP and purified catalytic subunit of cyclic AMP-dependent protein kinase from the same tissue. Ribosomal proteins that were most readily phosphorylated in isolated cerebral ribosomal subunits included proteins S2, S3a, S6 and S10 of the 40 S subunit and proteins L6, L13, L14, L19 and L29 of the 60 S subunit. These proteins were also phosphorylated in cellular preparations of rat cerebral cortex in situ or in vitro [Roberts & Ashby (1978) J. Biol. Chem. 253, 288-296; Roberts & Morelos (1979) Biochem. J. 184, 233-244]. However, several additional ribosomal proteins were phosphorylated when isolated 40 S or 60 S subunits were separately incubated in the reconstituted system. Analogous results were obtained with an equimolar mixture of cerebral 40 S and 60 S subunits under comparable conditions. In contrast, extensive exposure of purified cerebral polyribosomes to the catalytic subunit resulted in phosphorylation of only those ribosomal proteins of the 40 S subunit that were most highly labelled after the administration of [32P]Pi in vivo: proteins S2, S6 and S10. Ribosomal proteins of 60 S subunits that were readily phosphorylated in isolated cerebral polyribosomes included proteins L6, L13 and L29. These results indicate that polyribosome formation markedly decreases the number of ribosomal protein sites available for phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. Moreover, the findings suggest that, of the ribosomal protein phosphorylations observed in rat cerebral cortex in vivo, proteins S2, S6, S10, L6, L13 and L29 can be phosphorylated in polyribosomes, whereas proteins S3a, S5, L14 and L19 may become phosphorylated only in free ribosomal subunits.  相似文献   

4.
Quantitative autoradiography was used to examine the distribution of [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding to protein kinase C in the middle frontal and temporal cortices and the hippocampal region of nine control and nine elderly subjects with Alzheimer's disease (AD). AD patients had a clinical diagnosis of the disease that was confirmed neuropathologically by the presence of numerous plaques in the hippocampus and cerebral cortex. Choline acetyltransferase (ChAT) activity was significantly reduced in the middle frontal and temporal cortex and in the hippocampus of AD subjects, with the deficit being greater than 60% of control values. Quantitative autoradiographic analysis of [3H]PDBu binding to protein kinase C revealed a heterogeneous pattern in control brain, being particularly high in superficial layers of the cortex and CA1 of the hippocampus. There were no significant differences between control and AD sections in all areas examined within the middle frontal cortex; e.g., layers I-II control, 491 +/- 46 versus AD, 537 +/- 39 pmol/g of tissue; middle temporal cortex, e.g., layers I-II control, 565 +/- 68 versus AD, 465 +/- 72 pmol/g of tissue; and hippocampal formation, e.g., CA1 control, 511 +/- 28 versus AD, 498 +/- 25 pmol/g of tissue. In a parallel study, [3H]PDBu binding to homogenate preparations of control and AD brain confirmed that there was no significant difference in [3H]PDBu binding in either the particulate or the cytosolic fraction. We have demonstrated in a well-defined population of AD patients that [3H]PDBu binding to protein kinase C remains preserved in brain regions that are severely affected by the neuropathological and neurochemical correlates of AD.  相似文献   

5.
Glycoprotein biosynthesis was studied with mouse L-cells grown in suspension culture. Glucose-deprived cells incorporated [3H]mannose into 'high-mannose' protein-bound oligosaccharides and a few relatively high-molecular-weight lipid-linked oligosaccharides. The latter were retained by DEAE-cellulose and turned over quite slowly during pulse--chase experiments. Increased heterogeneity in size of lipid-linked oligosaccharides developed during prolonged glucose deprivation. Sequential elongation of lipid-linked oligosaccharides was also observed, and conditions that prevented the assembly of the higher lipid-linked oligosaccharides also prevented the formation of the larger protein-bound 'high-mannose' oligosaccharides. In parallel experiments, [3H]mannose was incorporated into a total polyribosome fraction, suggesting that mannose residues were transferred co-translationally to nascent protein. Membrane preparations from these cells catalysed the assembly from UDP-N-acetyl-D-[6-3H]glucosamine and GDP-D-[U-14C]mannose of polyisoprenyl diphosphate derivatives whose oligosaccharide moieties were heterogeneous in size. Elongation of the N-acetyl-D-[6-3H]glucosamine-initiated glycolipids with mannose residues produced several higher lipid-linked oligosaccharides similar to those seen during glucose deprivation in vivo. Glucosylation of these mannose-containing oligosaccharides from UDP-D-[6-3H]glucose was restricted to those of a relatively high molecular weight. Protein-bound saccharides formed in vitro were mainly smaller in size than those assembled on the lipid acceptors. These results support the involvement of lipid-linked saccharides in the synthesis of asparagine-linked glycoproteins, but show both in vivo and in vitro that protein-bound 'high-mannose' oligosaccharide formation can occur independently of higher lipid-linked oligosaccharide synthesis.  相似文献   

6.
The binding of [3H]PK 11195 and [3H]Ro 5-4864 to membrane preparations from cerebral cortex and peripheral tissues of various species was studied. [3H]PK 11195 (0.05-10 nM) bound with high affinity to rat and calf cerebral cortical and kidney membranes. [3H]Ro 5-4864 (0.05-30 nM) also successfully labeled rat cerebral cortical and kidney membranes, but in calf cerebral cortical and kidney membranes, its binding capacity was only 3 and 4%, respectively, of that of [3H]PK 11195. Displacement studies showed that unlabeled Ro 5-4864, diazepam, and flunitrazepam were much more potent in displacing [3H]PK 11195 from rat cerebral cortex and kidney membranes than from calf tissues. The potency of unlabeled Ro 5-4864 in displacing [3H]PK 11195 from the cerebral cortex of various other species was also tested, and the rank order of potency was rat = guinea pig greater than cat = dog greater than rabbit greater than calf. Analysis of these displacement curves revealed that Ro 5-4864 bound to two populations of binding sites from rat and calf kidney and from rat, guinea pig, rabbit, and calf cerebral cortex but to a single population of binding sites from cat and dog cerebral cortex. Using [3H]PK 11195 as a ligand, the rank order of binding capacity in cerebral cortex of various species was cat greater than calf greater than guinea pig greater than rabbit greater than dog greater than rat, whereas when [3H]Ro 5-4864 was used, the rank order of binding capacity was cat greater than guinea pig greater than rat greater than rabbit greater than calf greater than dog.  相似文献   

7.
The IC50 value for inhibition of specific [3H]yohimbine binding to rat cerebral cortical membranes by clonidine was increased, and the Hill coefficient (nH) approached unity in the presence of 150 microM GTP. Pretreatment of membranes with islet-activating protein (IAP) in the presence of NAD caused an increase in IC50 and nH values for clonidine compared with control membranes in the absence of GTP, the addition of which was without effect. Scatchard analysis showed that the Bmax value of the high-affinity component in [3H]clonidine binding was decreased by pretreatment with IAP/NAD. GTP in a concentration range of 0.1 microM-1 mM caused a significant elevation of [3H]yohimbine binding. In IAP/NAD-pretreated membranes, however, [3H]yohimbine binding was no longer affected by GTP, although IAP/NAD significantly (p less than 0.01) increased [3H]yohimbine binding compared to control. IAP ADP-ribosylated 41,000 dalton proteins of cerebral cortical membranes. From these results, it can be suggested that inhibitory guanine nucleotide regulatory protein with Mr 41,000 couples to alpha 2-adrenoceptors to regulate binding affinity of agonists and antagonists in membranes of the rat cerebral cortex.  相似文献   

8.
M Awad  M Gavish 《Life sciences》1991,49(16):1155-1161
The specific binding of [3H]PK 11195 and [3H]Ro 5-4864 to human cerebral cortex, kidney, and colon membranes was studied in order to determine whether peripheral type benzodiazepine receptors (PBR) characteristics located in human tissues are similar to those located in calf or rat tissues. While [3H]PK 11195 (0.05-10 nM, final concentration) bound with high affinity (KD about 2 nM) to human cerebral cortex, kidney, and colon membranes, yielding maximal numbers of binding sites of 255 +/- 23, 1908 +/- 28, and 1633 +/- 98 fmol/mg protein, respectively, the specific binding of [3H]Ro 5-4864 (1.25-40 nM, final concentration), was barely detectable (nonspecific binding about 90% of the total binding). Furthermore, unlabeled PK 11195 was two orders of magnitude more potent than unlabeled Ro 5-4864 in displacing [3H]PK 11195 specific binding from human cerebral cortex and kidney membranes. These results indicate that PBR binding characteristics located in human tissues are similar (but not identical) to those located in calf tissues, but not to those located in rat tissues.  相似文献   

9.
Isolated Xenopus laevis retinas were incubated with 3H-labeled mannose or leucine in the presence or absence of tunicamycin (TM), a selective inhibitor of dolichyl phosphate-dependent protein glycosylation. At a TM concentration of 20 micrograms/ml, the incorporation of [3H]mannose and [3H]leucine into retinal macromolecules was inhibited by approximately 66 and 12-16%, respectively, relative to controls. Cellular uptake of the radiolabeled substrates was not inhibited at this TM concentration. Polyacrylamide gel electrophoresis revealed that TM had little effect on the incorporation of [3H]leucine into the proteins of whole retinas and that labeling of proteins (especially opsin) in isolated rod outer segment (ROS) membranes was negligible. The incorporation of [3H]mannose into proteins of whole retinas and ROS membranes was nearly abolished in the presence of TM. Autoradiograms of control retinas incubated with either [3H]mannose or [3H]leucine exhibited a discrete concentration of silver grains over ROS basal disc membranes. In TM-treated retinas, the extracellular space between rod inner and outer segments was dilated and filled with numerous heterogeneously size vesicles, which were labeled with [3H]leucine but not with [3H]mannose. ROS disc membranes per se were not labeled in the TM-treated retinas. Quantitative light microscopic autoradiography of retinas pulse-labeled with [3H]leucine showed no differences in labeling of rod cellular compartments in the presence or absence of TM as a function of increasing chase time. These results demonstrate that TM can block retinal protein glycosylation and normal disc membrane assembly under conditions where synthesis and intracellular transport of rod cell proteins (e.g., opsin) are not inhibited.  相似文献   

10.
Kim KW  Son Y  Shin BS  Cho KP 《Life sciences》2001,68(11):1305-1315
Naltriben (NTB) has been used to differentiate the subtypes of delta opioid receptors, delta1 and delta2. However, there is considerable evidence suggesting that NTB may act on other types of opioid receptors too. We examined the effects of NTB on the specific binding of radiolabeled ligands for opioid mu and kappa2 receptors, and the effects on the release of [3H]norepinephrine ([3H]NE) in rat cerebral cortex slices. NTB displaced the specific binding of [3H]DAMGO with Ki value of 19.79 +/- 1.12 nM in rat cortex membranes. Specific binding of [3H]diprenorphine ([3H]DIP) was inhibited by NTB with Ki value of 82.75 +/- 6.32 nM in the presence of DAMGO and DPDPE. High K+ (15 mM)-stimulated release of [3H]NE was attenuated by DAMGO in rat cerebral cortex slices. NTB (30 nM) shifted the dose-response curve of DAMGO to the right and attenuated the maximal effect. In the meantime, NTB inhibited high K+-stimulated [3H]NE release at concentrations above 100 nM. The inhibitory effect of NTB was not attenuated by CTAP (10 nM) and naloxone (3 nM) but by higher concentration of naloxone (30 nM), nor-BNI (300 nM) and bremazocine (3 nM). These results indicate that NTB, depending on the dosage, could acts not only as an antagonist at delta but also as a noncompetitive antagonist for mu receptors, and as an agonist for kappa2 receptors in rat cerebral cortex.  相似文献   

11.
Kim KW  Woo RS  Kim CJ  Cheong YP  Kim JK  Kwun J  Cho KP 《Life sciences》2000,67(1):61-71
This study was undertaken to examine the receptor selectivity of Met-enkephalin-Arg6-Phe7 (MERF) employing radioreceptor binding assays in human cerebral cortex membranes, and to elucidate the responsible receptors that mediate the regulatory action of MERF on high (20 mM) K+-stimulated release of [3H]norepinephrine ([3H]-NE) in rat cortex slices. Specific binding of [3H]MERF was inhibited by DAMGO, Tyr-D-Arg-Phe-Sar(TAPS), bremazocine and ethylketocyclazocine (EKC), but not by U69,593 (U69) and DPDPE. MERF showed high affinity for specific binding sites of [3H]DAMGO. However, MERF had little influence on the specific binding of [3H]DPDPE, [3H]U69 and [3H]diprenorphine ([3H]DIP) in the presence of 1 microM each of DAMGO, DPDPE and U69. In [3H]NE release experiments using rat cortex slices, DAMGO, MERF and EKC, in order of their potency, inhibited K+-stimulated release of [3H]NE. The inhibitory effects of MERF and DAMGO were more sensitive than that of EKC to antagonism by CTAP, nor-binaltorphimine (nor-BNI) and naloxone. These results suggested that MERF possesses high affinity for mu-receptors, but not for delta-, kappa1-, and very low affinity for kappa2-receptors in human cerebral cortex membranes. Also, the inhibitory effect of MERF on the K+-stimulated release of [3H]NE appears to be mediated by mu-receptors in rat cerebral cortex slices.  相似文献   

12.
2-Deoxy-2-fluoro-D-[3H]glucose and 2-deoxy-2-fluoro-D-[3H]mannose have been prepared by tritiation of the corresponding unlabeled 2-fluoro sugars. The tritiated 2-fluoro sugars are phosphorylated and activated by UTP and by GTP to yield UDP-2-deoxy-2-fluoro-D-[3H]glucose, UDP-2-deoxy-2-fluoro-D-[3H]mannose, GDP-2-deoxy-2-fluoro-D-[3H]glucose and GDP-2-deoxy-2-fluoro-D-[3H]mannose in both cell types. The nucleotide derivatives could also be labeled in the nucleotide moiety by feeding the cells with [14C]uridine or [14C]guanosine in the presence of unlabeled 2-fluoro sugar. No evidence was obtained for metabolic steps in which the six-carbon chain of 2-fluoro sugars was not preserved. No epimerisation of the label to 2-deoxy-2-fluoro-D-[3H]galactose could be observed by radioactive gas-liquid chromatography of the enzymatic cleavage products of the different 2-fluoro sugar metabolites isolated from either cell type. Yeast and chick embryo cells both incorporate 2-deoxy-2-fluoro-D-[3H]glucose and 2-deoxy-2-fluoro-D-[3H]mannose specifically into glycoproteins, although this incorporation is very low when compared to the incorporation of 2-deoxy-D-[3H]glucose.  相似文献   

13.
Slices of rat parietal cerebral cortex took up and retained [3H] melatonin up to a tissue concentration about 4-fold to that present in the incubation medium. This phenomenon was time-dependent, maxima being observed after 180 min-incubations Eighty to 93% of the radioactivity present in the cerebral cortex slices was chromatographically identified as melatonin. Even at the highest melatonin concentration that could be dissolved in the incubation media, a constant proportion of [3H] melatonin was bound to cortical slices, indicating that within this concentration range, melatonin binding is independent of its concentration. Melatonin effects on protein synthesis in the rat cerebral cortex were investigated by studying the incorporation of [3H] L-leucine into proteins in cerebral cortex of rats injected s.c. with 10 or 100 μg/day of melatonin for 5 to 10 days. Both treatments caused leucine incorporation into proteins to increase significantly by about 50 to 60%.  相似文献   

14.
The binding and displacement of beta-adrenoceptor blockers, [3H]propranolol ([3H]PRP) and [3H]dihydroalprenolol ([3H]DHA), were studied on isolated rat erythrocytes, their membranes and ghosts; the binding of [3H]DHA and a M-cholinoceptor blocker, [3H]quinuclidinylbenzylate ([3H]QNB), on cerebral cortex membranes. In all experiments, ligand-receptor interactions conformed to a model of two pools of receptors in the same effector system and the binding of two ligand molecules to the receptor. The results were similar for the displacement of [3H]PRP, [3H]DHA and [3H]QNB with propranolol, dihydroalprenolol and quinuclidinyl-benzylate, respectively. The parameters of [3H]PRP to beta-adrenoceptor binding for intact erythrocytes were: Kd1 = 0.74+/-0.07 nM, Kd2 = 14.40+/-0.41 nM, B1 = 24+/-2 unit/cell, B2 = 263+/-5 unit/cell; for ghosts, Kd1 = 0.70+/-0.17 nM, Kd2 = 19.59+/-2.59 nM, B1 = 9+/-1 fmol/mg protein, B2 = 39+/-4 fmol/mg protein. Receptor affinities were similar in erythrocytes and ghosts; on the ghost membrane, the number of receptors was considerably lower (B1 = 2 unit/cell, B2 = 6 unit/cell). The parameters of [3H]QNB to M-cholinoceptor binding of the cerebral cortex membrane were the following: Kd1 = 0.43 nM, Kd2 = 2.83 nM, B1 = 712 fmol/mg, B2 = 677 fmol/mg.  相似文献   

15.
Distribution of the Glucose Transporter in the Mammalian Brain   总被引:8,自引:4,他引:4  
We used [3H]cytochalasin B as a specific ligand to study the glucose transporter of the following tissue preparations: (a) microvessels derived from the cerebral cortex and cerebellum of the rat and pig, (b) particulate fractions of the cerebral cortex and cerebellum of the rat and pig, (c) lateral, third, and fourth ventricular choroid plexus of the pig, and (d) synaptosomes from the pig cerebral cortex. Specific, D-glucose-displaceable binding of [3H]cytochalasin B was present in all the preparations studied. This binding was saturable and displayed the kinetics of a single class of binding sites, similar to the glucose transporter found in other mammalian tissues. The density of the glucose transporter was much higher in cerebral and cerebellar microvessels and choroid plexus than either in crude particulate fractions of the cerebrum and cerebellum or in cerebral synaptosomes. These findings agree with the physiologic function of brain microvessels that transport glucose, not only for their own use, but also for the much greater mass of the entire brain. In the pig, the density of the glucose transporter in cerebral microvessels was significantly higher than in cerebellar microvessels. Irreversible photoaffinity labeling of the glucose transporter of synaptosomal membranes with [3H]cytochalasin B followed by solubilization and polyacrylamide gel electrophoresis demonstrated a single region of radioactivity that corresponded to a molecular mass of 60,000-64,000 daltons.  相似文献   

16.
1. Explants of mammary glands of pregnant rabbits cultured in the absence of insulin, prolactin and cortisol incorporated [2-3H]mannose into lipid-linked mono- and oligo-saccharide and protein. 2. Inclusion of the hormones in the culture medium stimulated the incorporation of [2-3H]mannose into lipid-linked monosaccharide 4-fold, into lipid-linked oligosaccharide 4-fold and into protein 13-fold after 24 h in culture. 3. Addition of tunicamycin to the incubation medium completely inhibited the incorporation of [2-3H]mannose into lipid-linked oligosaccharide and protein after an initial lag period of about 2h. Incorporation of this radiolabel into lipid-linked monosaccharide was increased 4-fold under these conditions. 4. Incorporation of [4,5-3H]leucine into protein was unaffected by the presence of tunicamycin. 5. Analysis of mannose-labelled protein by polyacrylamide-gel electrophoresis indicated that a major radiolabelled protein of apparent mol.wt. 65,000-70,000 was synthesized and approx. 70% of this protein appeared in the soluble fraction. 6. Glycosylation of the protein but not synthesis of its peptide backbone was sensitive to tunicamycin. 7. Possible origins of this glycoprotein synthetized when the tissue is stimulated to differentiate in culture are discussed.  相似文献   

17.
H M Huang  G E Gibson 《Life sciences》1989,45(16):1443-1449
The effects of potassium and in vitro histotoxic hypoxia (i.e. KCN) on phosphatidylinositol turnover in rat cortical synaptosomes were determined. [2-3H] Inositol prelabelled rat synaptosomes were prepared from cerebral cortex slices that had been incubated with [2-3H] inositol. Depolarization with 60 mM KCl increased [2-3H] inositol phosphates in a time dependent manner. Depolarization with 60 mM KCl increased [2-3H] inositol trisphosphate transiently at 5 s. K+ induced rapid formation of [2-3H]-inositol bisphosphate and maintained an elevated level for at least 5 min. K+ stimulated gradual formation of [2-3H] inositol monophosphate with time. One minute of hypoxia enhanced potassium-stimulated [2-3H] inositol bisphosphate formation. However, 30 min of hypoxia impaired potassium-stimulated accumulation of [2-3H] inositol phosphates. The effects of histotoxic hypoxia were all dependent upon calcium in the medium and on K+-depolarization. Thus, hypoxia altered the K+-induced accumulation of inositol phosphates in prelabelled synaptosomes in a time dependent, biphasic manner that was calcium dependent.  相似文献   

18.
H2 histaminic receptors in rat cerebral cortex. 1. Binding of [3H]histamine   总被引:1,自引:0,他引:1  
Saturable binding of [3H]histamine in equilibrium with homogenates of rat cerebral cortex reveals Hill coefficients between 0.4 and 1.0, depending upon the conditions. Data from individual experiments are well described assuming one or two classes of sites. Only the sites of higher affinity (KP1 = 3.9 +/- 0.5 nM) are observed when binding is measured by isotopic dilution at a low concentration of the radioligand (less than 1.5 nM) in the presence of magnesium or by varying the concentration of the radioligand. The sites of lower affinity (KP2 = 221 +/- 26 nM) appear during isotopic dilution at higher concentrations of the radioligand or at lower concentrations either upon the addition of guanylyl imidodiphosphate (GMP-PNP) or upon the removal of magnesium. Estimates of the second- and first-order rate constants for association and dissociation of [3H]histamine agree well with KP1. Apparent capacities corresponding to KP1 and KP2 are of the order of 100 ([R1]t) and 1300 pmol/g of protein ([R2]t), respectively. Simple interconversion cannot account for the changes in binding that occur upon adding GMP-PNP or removing magnesium, since the increase in [R2]t exceeds the decrease in [R1]t. Moreover, the apparent amount of high-affinity complex exhibits a biphasic dependence on the concentration of [3H]histamine; an increase at low concentrations is offset by a decrease that occurs at higher concentrations. The latter appears to be positively cooperative and concomitant with formation of the low-affinity complex. These and other observations indicate that the binding of histamine is inconsistent with models commonly invoked to rationalize the binding of agonists to neurohumoral receptors. GMP-PNP and magnesium reciprocally alter capacity at the sites of higher affinity, however, and the reduction caused by GMP-PNP reflects a substantial increase in the rate constant for dissociation at the sites that appear to be lost. The sites labeled by [3H]histamine thus reveal the properties of neurohumoral receptors linked to a nucleotide-specific G/F protein.  相似文献   

19.
1. The metabolism of glucose and the exchangeable Ca2+ pool were measured in rat pancreatic islets, in order to assess the possible significance of glycolysis in the process of glucose-induced insulin release. 2. At high glucose concentration (16.7 mM), glucose was metabolized at the following rate (pmol of glucose residue/h per islet +/- S.E.M.): 131 +/- 11 for glucose uptake, 129+/-8 for glucose utilization, as judged by the conversion of [5-3H]glucose into 3H2O,60+/-2 for lactate output and 25+/-2 for glucose oxidation. 3. The secretory pattern usually correlated with the metabolic data. For instance, the ability of different sugars (glucose, mannose, fructose, galactose, D-glyceraldehyde) to stimulate lactate output closely paralleled their relative insulinotropic capacity. A disparity between metabolic and secretory responses was, however, encountered in the presence of dibutyryl cyclic AMP and theophylline. 4. Despite this contrasting behaviour, the size of the Ca2+- exchangeable pool (net uptake of 45Ca2+) was invariably proportional to the rate of lactate output under all experimental conditions examined. It is concluded that glycolysis usually exerts a tight control on the rate constant for Ca2+ transport across the B-cell membrane.  相似文献   

20.
The accumulation of 2-deoxy-D-glucose-6-phosphate (2DG6P), detected using 31P NMR spectroscopy, has been used as a measure of the rate of glucose uptake, yet the accuracy of this measurement has not been verified. In this study, isolated rat hearts were perfused with different substrates or isoproterenol for 30 min before measurement of either 2DG6P accumulation or [2-3H]glucose uptake, without and with insulin. Basal contractile function and metabolite concentrations were the same for all hearts. The basal rates of 2DG6P accumulation differed significantly, depending on the preceding perfusion protocol, and were 38-60% of the [2-3H]glucose uptake rates, whereas insulin-stimulated 2DG6P accumulation was the same or 71% higher than the [2-3H]glucose uptake rates. Therefore the ratio of 2DG6P accumulation/[2-3H]glucose uptake rates varied from 0.38 to 1.71, depending on the prior perfusion conditions or the presence of insulin. The rates of 2DG6P hydrolysis were found to be proportional to the intracellular 2DG6P concentrations, with a K(m) of 17.5mM and V(max) of 1.4 micromol/g dry weight/min. We conclude that the rates of 2DG6P accumulation do not accurately reflect glucose uptake rates under all physiological conditions in the isolated heart and should be used with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号