首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
This article addresses the physical chemical processes underlying biological self-organisation by which a homogenous solution of reacting chemicals spontaneously self-organises. Theoreticians have predicted that self-organisation can arise from a coupling of reactive processes with molecular diffusion. In addition, the presence of an external field, such as gravity, at a critical moment early in the process may determine the morphology that subsequently develops. The formation, in-vitro, of microtubules, a constituent of the cellular skeleton, shows this type of behaviour. The preparations spontaneously self-organise by reaction-diffusion and the morphology that develops depends upon the presence of gravity at a critical bifurcation time early in the process. Here, we present numerical simulations of a population of microtubules that reproduce this behaviour. Microtubules can grow from one end whilst shrinking from the other. The shrinking end leaves behind a chemical trail of high tubulin concentration. Neighbouring microtubules preferentially grow into these regions, whilst avoiding regions of low tubulin concentration. The chemical trails produced by individual microtubules thus activate and inhibit the formation of neighbouring microtubules and this progressively leads to self-organisation. Gravity acts by way of its directional interaction with the macroscopic density fluctuations present in the solution arising from microtubule disassembly.  相似文献   

2.
Embedding a simple Michaelis-Menten enzyme in a gel slice may allow the catalysis of not only scalar processes but also vectorial ones, including uphill transport of a substrate between two compartments, and may make it seem as if two enzymes or transporters are present or as if an allosterically controlled enzyme/transporter is operating. The values of kinetic parameters of an enzyme in a partially hydrophobic environment are usually different from those actually measured in a homogeneous aqueous solution. This implies that fitting kinetic data (expressed in reciprocal co-ordinates) from in vivo studies of enzymes or transporters to two straight lines or a sigmoidal curve does not prove the existence of two different membrane mechanisms or allosteric control. In the artificial transport systems described here, a functional asymmetry was sufficient to induce uphill transport, therefore, although the active transport systems characterised so far correspond to proteins asymmetrically anchored in a membrane, the past or present existence of structurally symmetrical systems of transport in vivo cannot be excluded. The fact that oscillations can be induced in studies of the maintenance of the electrical potential of frog skin by addition of lithium allowed evaluation of several parameters fundamental to the functioning of the system in vivo (e.g., relative volumes of internal compartments, characteristic times of ionic exchanges between compartments). Hence, under conditions that approach real biological complexity, increasing the complexity of the behaviour of the system may provide information that cannot be obtained by a conventional, reductionist approach.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号