首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRAIL, the TNF-related apoptosis-inducing ligand, induces apoptosis of tumor cells, but not normal cells; the roles of TRAIL in nontransformed tissues are unknown. Using a soluble TRAIL receptor, we examined the consequences of TRAIL blockade in an animal model of multiple sclerosis. We found that chronic TRAIL blockade in mice exacerbated experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. The exacerbation was evidenced primarily by increases in disease score and degree of inflammation in the CNS. Interestingly, the degree of apoptosis of inflammatory cells in the CNS was not affected by TRAIL blockade, suggesting that TRAIL may not regulate apoptosis of inflammatory cells in experimental autoimmune encephalomyelitis. By contrast, myelin oligodendrocyte glycoprotein-specific Th1 and Th2 cell responses were significantly enhanced in animals treated with the soluble TRAIL receptor. Based on these observations, we conclude that unlike TNF, which promotes autoimmune inflammation, TRAIL inhibits autoimmune encephalomyelitis and prevents activation of autoreactive T cells.  相似文献   

2.
Molecules that regulate encephalitogenic T cells are of interest for multiple sclerosis. In this study we show that protein kinase Ctheta (PKCtheta) is critical for the development of Ag-specific Th1 cells in experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis. PKCtheta-deficient mice immunized with myelin oligodendrocyte glycoprotein failed to develop cell infiltrates and Th1 cytokines in the CNS and were resistant to the development of clinical EAE. CD4 T cells became primed and accumulated in secondary lymphoid organs in the absence of PKCtheta, but had severely diminished IFN-gamma, TNF, and IL-17 production. Increasing Ag exposure and inflammatory conditions failed to induce EAE in PKCtheta-deficient mice, showing a profound defect in the myelin oligodendrocyte glycoprotein-reactive T cell population. These data provide evidence of a pivotal role for PKCtheta in the generation and effector function of autoimmune Th1 cells.  相似文献   

3.
Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-gamma, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways.  相似文献   

4.
Subsidence of inflammation and clinical recovery in experimental autoimmune encephalomyelitis (EAE) is postulated to involve apoptosis of inflammatory cells. To test this concept, we examined the effects of overexpressing the long form of human FLICE-inhibitory protein, a potent inhibitor of death receptor-mediated apoptosis, in myelin oligodendrocyte glycoprotein-induced EAE in DBA/1 mice. We found that overexpression of the long form of human FLICE-inhibitory protein by retroviral gene transfer of hemopoietic stem cells led to a clinically more severe EAE in these mice compared with control mice receiving the retroviral vector alone. The exacerbated disease was evident by an enhanced and prolonged inflammatory reaction in the CNS of these animals compared with control mice. The acute phase of EAE was characterized by a massive infiltration of macrophages and granulocytes and a simultaneous increase in TNF-alpha production in the CNS. In the chronic phase of the disease, there was a prolonged inflammatory response in the form of persistent CD4(+) T and B cells in the CNS and a peripheral Th1 cytokine bias caused by elevated levels of IFN-gamma and reduced levels of IL-4 in the spleen. Our findings demonstrate that death receptor-mediated apoptosis can be important in the pathogenesis of EAE and further emphasize the need for effective apoptotic elimination of inflammatory cells to achieve disease remission.  相似文献   

5.
Autoimmune encephalomyelitis is a disease of the CNS that can develop when an initial peripheral inflammatory stimulus is followed by infiltration and reactivation of T lymphocytes in the CNS. We report a crucial role for coronin 1, which is essential for maintenance of the naive T cell pool, for the development of murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. In the absence of coronin 1, immunization with myelin oligoglycoprotein (MOG(35-55)) peptide largely failed to induce EAE symptoms, despite normal mobilization of leukocyte subsets in the blood, as well as effector cytokine expression comparable with wild-type T cells on polyclonal stimulation. Susceptibility of coronin 1-deficient mice to EAE induction was restored by transfer of wild-type CD4(+) T cells, suggesting that the observed resistance of coronin 1-deficient mice to EAE development is T cell intrinsic. Importantly, although coronin 1-deficient regulatory T cells (Tregs) showed a suppressor activity comparable with wild-type Tregs, Treg depletion failed to restore EAE development in coronin 1-deficient animals. These results suggest a hitherto unrecognized role of naive T cells in the development of autoimmune encephalomyelitis and reveal coronin 1 as a crucial modulator of EAE induction.  相似文献   

6.
7.
The B7/CD28 pathway provides critical costimulatory signals required for complete T cell activation and has served as a potential target for immunotherapeutic strategies designed to regulate autoimmune diseases. This study was designed to examine the roles of CD28 and its individual ligands, B7-1 and B7-2, in experimental autoimmune encephalomyelitis (EAE), a Th1-mediated inflammatory disease of the CNS. EAE induction in CD28- or B7-deficient nonobese diabetic (NOD) mice was compared with the effects of B7/CD28 blockade using Abs in wild-type NOD mice. Disease severity was significantly reduced in CD28-deficient as well as anti-B7-1/B7-2-treated NOD mice. B7-2 appeared to play the more dominant role as there was a moderate decrease in disease incidence and severity in B7-2-deficient animals. EAE resistance was not due to the lack of effective priming of the myelin peptide-specific T cells in vivo. T cells isolated from CD28-deficient animals produced equivalent amounts of IFN-gamma and TNF-alpha in response to the immunogen, proteolipid protein 56-70. In fact, IFN-gamma and TNF-alpha production by Ag-specific T cells was enhanced in both the B7-1 and B7-2-deficient NOD mice. In contrast, peptide-specific delayed-type hypersensitivity responses in these animals were significantly decreased, suggesting a critical role for CD28 costimulation in in vivo trafficking and systemic immunity. Collectively, these results support a critical role for CD28 costimulation in EAE induction.  相似文献   

8.
During experimental autoimmune encephalomyelitis (EAE), autoreactive Th1 T cells invade the CNS. Before performing their effector functions in the target organ, T cells must recognize Ag presented by CNS APCs. Here, we investigate the nature and activity of the cells that present Ag within the CNS during myelin oligodendrocyte glycoprotein-induced EAE, with the goal of understanding their role in regulating inflammation. Both infiltrating macrophages (Mac-1(+)CD45(high)) and resident microglia (Mac-1(+)CD45(int)) expressed MHC-II, B7-1, and B7-2. Macrophages and microglia presented exogenous and endogenous CNS Ags to T cell lines and CNS T cells, resulting in IFN-gamma production. In contrast, Mac-1(-) cells were inefficient APCs during EAE. Late in disease, after mice had partially recovered from clinical signs of disease, there was a reduction in Ag-presenting capability that correlated with decreased MHC-II and B7-1 expression. Interestingly, although CNS APCs induced T cell cytokine production, they did not induce proliferation of either T cell lines or CNS T cells. This was attributable to production by CNS cells (mainly by macrophages) of NO. T cell proliferation was restored with an NO inhibitor, or if the APCs were obtained from inducible NO synthase-deficient mice. Thus, CNS APCs, though essential for the initiation of disease, also play a down-regulatory role. The mechanisms by which CNS APCs limit the expansion of autoreactive T cells in the target organ include their production of NO, which inhibits T cell proliferation, and their decline in Ag presentation late in disease.  相似文献   

9.
EBV-induced gene 3 (EBI3)-encoded protein can form heterodimers with IL-27P28 and IL-12P35 to form IL-27 and IL-35. IL-27 and IL-35 may influence autoimmunity by inhibiting Th17 differentiation and facilitating the inhibitory roles of Foxp3(+) regulatory T (Treg) cells, respectively. In this study, we have evaluated the development of experimental autoimmune encephalomyelitis (EAE) in EBI3-deficient mice that lack both IL-27 and IL-35. We found that myelin oligodendrocyte glycoprotein peptide immunization resulted in marginally enhanced EAE development in EBI3-deficient C57BL6 and 2D2 TCR-transgenic mice. EBI3 deficiency resulted in significantly increased Th17 and Th1 responses in the CNS and increased T cell production of IL-2 and IL-17 in the peripheral lymphoid organs. EBI3-deficient and -sufficient 2D2 T cells had equal ability in inducing EAE in Rag1(-/-) mice; however, more severe disease was induced in EBI3(-/-)Rag1(-/-) mice than in Rag1(-/-) mice by 2D2 T cells. EBI3-deficient mice had increased numbers of CD4(+)Foxp3(+) Treg cells in peripheral lymphoid organs. More strikingly, EBI3-deficient Treg cells had more potent suppressive functions in vitro and in vivo. Thus, our data support an inhibitory role for EBI3 in Th17, Th1, IL-2, and Treg responses. Although these observations are consistent with the known functions of IL-27, the IL-35 contribution to the suppressive functions of Treg cells is not evident in this model. Increased Treg responses in EBI3(-/-) mice may explain why the EAE development is only modestly enhanced compared with wild-type mice.  相似文献   

10.
Programmed death-1 (PD-1) is a negative costimulatory molecule, and blocking the interaction of PD-1 with its ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC), enhances autoimmune disease in several animal models. We have studied the role of PD-1 ligands in disease susceptibility and chronic progression in experimental autoimmune encephalomyelitis (EAE). In BALB/c mice immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55, PD-L1 but not PD-L2 blockade significantly increased EAE incidence. In B10.S mice immunized with myelin proteolipid protein (PLP) peptide 139-151, both PD-L1 and PD-L2 blockade markedly enhanced EAE severity. In prediabetic NOD mice immunized with PLP48-70, PD-L2 blockade worsened EAE but did not induce diabetes, whereas PD-L1 blockade precipitated diabetes but did not worsen EAE, suggesting different regulatory roles of these two ligands in EAE and diabetes. B6 mice immunized with MOG35-55 developed chronic persistent EAE, and PD-L2 blockade in the chronic phase exacerbated EAE, whereas PD-L1 blockade did not. In contrast, SJL/J mice immunized with PLP139-151 developed chronic relapsing-remitting EAE, and only PD-L1 blockade during remission precipitated EAE relapse. The strain-specific effects of PD-1 ligand blockade did not correlate with the expression of PD-L1 and PD-L2 on dendritic cells and macrophages in lymphoid tissue, or on inflammatory cells in the CNS. However, EAE enhancement is correlated with less prominent Th2 cytokine induction after specific PD-1 ligand blockade. In conclusion, PD-L1 and PD-L2 differentially regulate the susceptibility and chronic progression of EAE in a strain-specific manner.  相似文献   

11.
In multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), autoaggressive T cells traffic into the CNS and induce disease. Infiltration of these pathogenic T cells into the CNS has been correlated with the expression of the chemokine IFN-inducible protein (IP)10/CXC chemokine ligand (CXCL)10, a chemoattractant for activated T cells, and its receptor CXCR3, in the CNS of both MS patients and mice with EAE. In the present study, we report that targeted deletion of IP-10 did not diminish the expression, severity, or histopathology of EAE induced by active immunization with 100 micro g of myelin oligodendrocyte glycoprotein peptide (MOG)p35-55. However, we found that IP-10-deficient mice had a lower threshold for expression of disease compared with wild-type littermates. EAE induced by immunization with 5 micro g of MOGp35-55 resulted in more severe disease characterized by a greater number of CNS lesions and infiltrating mononuclear cells in IP-10-deficient mice compared with wild-type controls. IP-10-deficient mice immunized with MOGp35-55 demonstrated increased levels of IFN-inducible T cell alpha-chemokine/CXCL11 mRNA in the CNS and decreased levels of monokine induced by IFN-gamma/CXCL9 mRNA in draining lymph nodes, suggesting differential compensation for loss of IP-10 in lymphoid vs parenchymal tissue compartments. EAE in IP-10-deficient mice induced by low-dose immunization was associated with enhanced Ag-specific Th1 responses in the draining lymph node, which corresponded with diminished lymph node TGF-beta1 expression. Our data demonstrated that IP-10 was not required for the trafficking of pathogenic T cells into the CNS in EAE but played an unexpected role in determining the threshold of disease susceptibility in the periphery.  相似文献   

12.
We demonstrate the absolute requirement for a functioning class II-restricted Ag processing pathway in the CNS for the initiation of experimental autoimmune encephalomyelitis (EAE). C57BL/6 (B6) mice deficient for the class II transactivator, which have defects in MHC class II, invariant chain (Ii), and H-2M (DM) expression, are resistant to initiation of myelin oligodendrocyte protein (MOG) peptide, MOG(35-55)-specific EAE by both priming and adoptive transfer of encephalitogenic T cells. However, class II transactivator-deficient mice can prime a suboptimal myelin-specific CD4(+) Th1 response. Further, B6 mice individually deficient for Ii and DM are also resistant to initiation of both active and adoptive EAE. Although both Ii-deficient and DM-deficient APCs can present MOG peptide to CD4(+) T cells, neither is capable of processing and presenting the encephalitogenic peptide of intact MOG protein. This phenotype is not Ag-specific, as DM- and Ii-deficient mice are also resistant to initiation of EAE by proteolipid protein peptide PLP(178-191). Remarkably, DM-deficient mice can prime a potent peripheral Th1 response to MOG(35-55), comparable to the response seen in wild-type mice, yet maintain resistance to EAE initiation. Most striking is the demonstration that T cells from MOG(35-55)-primed DM knockout mice can adoptively transfer EAE to wild-type, but not DM-deficient, mice. Together, these data demonstrate that the inability to process antigenic peptide from intact myelin protein results in resistance to EAE and that de novo processing and presentation of myelin Ags in the CNS is absolutely required for the initiation of autoimmune demyelinating disease.  相似文献   

13.
CD24 is a cell surface glycoprotein that is expressed on both immune cells and cells of the CNS. We have previously shown that CD24 is required for the induction of experimental autoimmune encephalomyelitis (EAE), an experimental model for the human disease multiple sclerosis (MS). The development of EAE requires CD24 expression on both T cells and non-T host cells in the CNS. To understand the role of CD24 on the resident cells in the CNS during EAE development, we created CD24 bone marrow chimeras and transgenic mice in which CD24 expression was under the control of a glial fibrillary acidic protein promotor (AstroCD24TG mice). We showed that mice lacking CD24 expression on the CNS resident cells developed a mild form of EAE; in contrast, mice with overexpression of CD24 in the CNS developed severe EAE. Compared with nontransgenic mice, the CNS of AstroCD24TG mice had higher expression of cytokine genes such as IL-17 and demyelination-associated marker P8; the CNS of AstroCD24TG mice accumulated higher numbers of Th17 and total CD4+ T cells, whereas CD4+ T cells underwent more proliferation during EAE development. Expression of CD24 in CD24-deficient astrocytes also enhanced their costimulatory activity to myelin oligodendrocyte glycoprotein-specific, TCR-transgenic 2D2 T cells. Thus, CD24 on the resident cells in the CNS enhances EAE development via costimulation of encephalitogenic T cells. Because CD24 is increased drastically on resident cells in the CNS during EAE, our data have important implications for CD24-targeted therapy of MS.  相似文献   

14.
The cannabinoid system is immunomodulatory and has been targeted as a treatment for the central nervous system (CNS) autoimmune disease multiple sclerosis. Using an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we investigated the role of the CB(1) and CB(2) cannabinoid receptors in regulating CNS autoimmunity. We found that CB(1) receptor expression by neurons, but not T cells, was required for cannabinoid-mediated EAE suppression. In contrast, CB(2) receptor expression by encephalitogenic T cells was critical for controlling inflammation associated with EAE. CB(2)-deficient T cells in the CNS during EAE exhibited reduced levels of apoptosis, a higher rate of proliferation and increased production of inflammatory cytokines, resulting in severe clinical disease. Together, our results demonstrate that the cannabinoid system within the CNS plays a critical role in regulating autoimmune inflammation, with the CNS directly suppressing T-cell effector function via the CB(2) receptor.  相似文献   

15.
lyn, a member of the src kinase family, is an important signaling molecule in B cells. lyn(-/-) mice display hyperactive B-1 cells and IgM hyperglobulinemia. The role of lyn on T cell function and development of Th1-mediated inflammatory disease is not known. Therefore, we examined the effect of disruption of the lyn gene on the development of experimental allergic encephalomyelitis (EAE), a well-established Th1-mediated autoimmune disease. Following immunization with myelin oligodendrocyte protein (MOG) p35-55, lyn(-/-) mice had higher clinical and pathological severity scores of EAE when compared with wild type (WT). The increase in the severity of EAE in lyn(-/-) mice was not associated with a commensurate increase in the production of proinflammatory cytokines in the CNS. lyn(-/-) mice with EAE showed elevation in serum anti-IgM MOG Ab levels over that seen in WT mice, along with a modest increase in the mRNA levels of complement C5 and its receptor, C5aR, in the spinal cord. Transfer of serum from MOG-immunized lyn(-/-) mice worsened EAE in WT mice, suggesting a pathogenic role for anti-MOG IgM Abs in EAE. These observations underscore the potential role of lyn in regulation of Th1-mediated disease and the role of autoantibodies and complement in the development of EAE.  相似文献   

16.
Multiple sclerosis and an animal model resembling multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the CNS that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-gamma, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-gamma in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). In this study, we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of myelin oligodendrocyte glycoprotein-specific IFN-gamma-producing CD4(+) T cells in the CNS. IL-17(+)CD4(+) T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3(+)CD4(+) T cells in these mice was equivalent to that of control mice. Intracerebral BCG infection-induced protection of EAE and suppression of myelin oligodendrocyte glycoprotein-specific IL-17(+)CD4(+) T cell responses were similar in both wild-type and IFN-gamma-deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-gamma-mediated mechanisms.  相似文献   

17.
The factors contributing to chronic relapsing inflammatory disease processes of the central nervous system (CNS) and demyelination are poorly understood. In addition to cellular immune reactions, humoral factors such as antibodies might quantitatively or qualitatively influence the disease process. We therefore investigated the effects of administration of a monoclonal antibody specific for a CNS autoantigen on both acute and chronic experimental autoimmune encephalomyelitis (EAE) in mice and rats. This monoclonal antibody, 8-18C5, specific for a myelin/oligodendrocyte glycoprotein, was observed to accelerate clinical and pathologic changes of CNS autoimmune disease. In SJL mice with chronic relapsing EAE, injection of antibody into animals recovering from an attack induced fatal relapses; in Lewis rats, acute EAE was enhanced and associated with a hyperacute inflammatory response with demyelination, a feature not commonly seen in acute EAE. The demonstration that relapses and demyelination can be induced by administration of a white matter-reactive monoclonal antibody offers new possibilities to study processes resulting in CNS damage during autoimmune disease. Furthermore, these findings support the immunopathogenic potential of antibody to myelin components in inflammatory CNS disease processes and, specifically, in causing demyelination.  相似文献   

18.
IL-12 is thought to be involved in the susceptibility to experimental autoimmune encephalomyelitis (EAE), a Th1 cell-mediated autoimmune disorder of the CNS. IL-12 signals through a heterodimeric receptor (IL-12Rbeta1/IL-12Rbeta2), whose beta2-chain is up-regulated on activated, autoreactive Th1 cells. Contrary to the expectation that the absence of IL-12Rbeta2 would protect from EAE, we found that IL-12Rbeta2-deficient mice developed earlier and more severe disease, with extensive demyelination and CNS inflammation. The inflammatory cells were mainly comprised of CD4(+) T cells, monocyte/macrophages, and dendritic cells. Compared to wild-type mice, IL-12Rbeta2-deficient mice exhibited significantly increased autoantigen-induced proliferative response and increased production of TNF-alpha, GM-CSF, IL-17, IL-18/IL-18Ralpha, and NO. In addition, we found significantly increased levels of IL-23p19 mRNA expression in spleen cells from immunized IL-12Rbeta2(-/-) mice compared with wild-type mice. These findings indicate that IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the CNS, and that, in the absence of IL-12Rbeta2, increased IL-23 and other inflammatory molecules may be responsible for increased severity of EAE.  相似文献   

19.
Multiple sclerosis (MS) is a CNS autoimmune disease believed to be triggered by T cells secreting Th1-specific proinflammatory cytokines, such as GM-CSF. In the animal model of MS, experimental autoimmune encephalomyelitis (EAE), Th1 but not Th2 cells have been shown to induce disease; however, to date, no single encephalitogenic T cell-derived cytokine has been shown to be required for EAE onset. Because GM-CSF-deficient mice have been shown to be resistant to EAE following immunization with myelin self-Ag, we investigated the cellular source of the required GM-CSF and found that GM-CSF production by encephalitogenic T cells, but not CNS resident or other peripheral cells, was required for EAE induction. Furthermore, we showed that microglial cell activation, but not peripheral macrophage activation, was a GM-CSF-dependent process. Activation of microglial cells by the injection of LPS abrogated the GM-CSF requirement for EAE induction, suggesting that microglial cell activation is required for EAE onset. These data also demonstrate that GM-CSF is a critical Th1 cell-derived cytokine required for the initiation of CNS inflammation associated with EAE, and likely MS.  相似文献   

20.
Multiple sclerosis (MS) is a debilitating T cell mediated autoimmune disease of the central nervous system (CNS). Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) have given light to cellular mechanisms involved in the initiation and progression of this organ-specific autoimmune disease. Within the CNS, antigen presenting cells (APC) such as microglia and astrocytes participate as first line defenders against infections or inflammation. However, during chronic inflammation they can participate in perpetuating the self-destructive environment by secretion of inflammatory factors and/or presentation of myelin epitopes to autoreactive T cells. Dendritic cells (DC) are also participants in the presentation of antigen to T cells, even within the CNS. While the APCs alone are not solely responsible for mediating the destruction to the myelin sheath, they are critical players in perpetuating the inflammatory milieu. This review will highlight relevant studies which have provided insight to the roles played by microglia, DCs and astrocytes in the context of CNS autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号