首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alteration in the surface of endothelial cells (EC) in response to cytokines is likely to be of great importance to the regulation of cell migration and thereby to the evolution of inflammatory processes. We have generated three mAb against cytokine inducible Ag on EC. Whereas mAb 1.2B6 and 6.5B5 were found to react with ELAM-1 and ICAM-1, respectively, mAb 1.4C3 reacted with a novel molecule that showed a different pattern of expression from ELAM-1 or ICAM-1 after stimulation of EC by TNF, IL-1, or LPS. Like ELAM-1, the 1.4C3 Ag was minimally expressed on resting EC, whereas ICAM-1 was moderately expressed. After stimulation with IL-1, TNF, or LPS, ELAM-1 expression was maximal after 4 to 6 h, 1.4C3 Ag after 6 to 10 h, and ICAM-1 after 10 to 24 h. The duration of 1.4C3 expression was intermediate between ELAM-1 and ICAM-1, and was more prolonged in response to TNF than IL-1 or LPS. Whereas the expression of the three Ag showed a similar dose response to varying concentrations of IL-1 or LPS, EC required a 10-fold higher concentration of TNF for half maximal expression of ELAM-1 than for half maximal expression of 1.4C3 Ag or ICAM-1 (5 ng/ml compared to 0.5 ng/ml). Of the three Ag, only ICAM-1 was enhanced by IFN-gamma. SDS-PAGE under reducing conditions showed the 1.4C3 Ag to migrate as a single band with a relative molecular mass of approximately 95 kDa. mAb 1.4C3 adds to our understanding of the kinetics of the EC response to different cytokines and will be useful in studying the regulation of EC activation. Furthermore, the 1.4C3 molecule may have an important role in leukocyte-EC interactions.  相似文献   

2.
In this study two new in vitro effects of IFN-gamma on human umbilical vein endothelial (HUVE) cells were described. First, it was shown that the expression of the adhesion molecule ELAM-1 on activated HUVE cells can be modulated by IFN-gamma. ELAM-1 is normally not expressed by HUVE cells, but its expression can rapidly be induced by TNF, IL-1, or LPS. Maximal expression is reached after 4 to 6 h of activation, and after 24 h the expression disappeared. Whereas IFN-gamma per se did not induce expression of ELAM-1, it enhanced and prolonged the expression of ELAM-1. This enhancement occurred when IFN-gamma was added before activation as well as when added simultaneously with activation. When IFN-gamma was added 6 or 9 h after the activation, the normally ongoing reduction of expression was not only retarded, but the expression increased for at least 3 h. Moreover, IFN-gamma abrogated the refractory period for restimulation. Neither IFN-beta nor IL-6 had any effect on the expression of ELAM-1. The second effect of IFN-gamma on HUVE cells is the capacity to enhance the IL-6 production by these cells. Prestimulation as well as coincubation of IFN-gamma with TNF, IL-1, or LPS resulted in a strongly augmented production of IL-6. The effects of IFN-gamma may in vivo play a role in the regulation of an inflammatory reaction, because ELAM-1 is an adhesion molecule for neutrophils, and IL-6 has an enhancing effect on the cytotoxicity of neutrophils.  相似文献   

3.
We have injected human TNF, LPS, and IL-4 into the skin of baboons to examine regulation of endothelial leukocyte adhesion molecules (ELAM) in vivo and to determine which endothelial adhesion molecules correlate temporally and spatially with cytokine-induced T cell infiltration. The expression of adhesion molecules ELAM-1 (E-selectin), VCAM-1, and ICAM-1 (CD54) were quantified by immunocytochemical staining of frozen sections obtained from skin biopsies; T cell infiltration was measured by immunocytochemical staining of CD3+ T cells in serial sections. We found that injection of TNF causes late (24 to 48 h) T cell infiltration whereas injection of LPS, in doses that do not cause tissue necrosis, does not. The ability of TNF (but not LPS) to recruit T cells correlates with the ability of TNF to cause sustained endothelial cell adhesion molecule expression. Expression of VCAM-1 on post-capillary venules showed the highest degree of spatial localization with infiltrates. IL-4, although not proinflammatory by itself, can cause T cell infiltration in combination with an ineffective dose of TNF. The ability of IL-4 to augment TNF-induced inflammation best correlates with the ability of the combination of IL-4 and TNF to increase endothelial VCAM-1 expression. In contrast, IL-4 does not promote T cell infiltration or endothelial VCAM-1 expression in combination with LPS. In cytokine-injected tissues, VCAM-1 is also expressed on connective tissue cells other than endothelium, including smooth muscle and perineural cells, where it is induced by cytokines in parallel with endothelial VCAM-1. Overall, our data support the hypothesis that endothelial VCAM-1 expression contributes to T cell extravasation at sites of inflammation. Furthermore, we find that IL-4, a product a Ag-activated T cells, can interact with TNF to selectively promote VCAM-1 expression and the development of T cell-rich infiltrates, characteristic of Ag-induced inflammatory reactions.  相似文献   

4.
Neutrophil adherence to endothelium is partially mediated by the expression of endothelial leukocyte adhesion molecule-1 (ELAM-1) on endothelial cells activated by agents such as lipopolysaccharide (LPS) and phorbol myristate acetate (PMA). To elucidate molecular mechanisms involved in the induction of ELAM-1 on endothelial cells, we investigated the effect of the NADPH oxidase inhibitor, apocynin (4-hydroxy-3-methoxyacetophenone), on ELAM-1 mRNA expression in human umbilical vein endothelial cells (HUVEC) by Northern blot analysis. Apocynin downregulated both LPS- and PMA-induced ELAM-1 mRNA expression in a dose-dependent manner. Our results suggest NADPH oxidase might play a key role in ELAM-1 mRNA expression in HUVEC.  相似文献   

5.
TNF-alpha can incite neutrophil-mediated endothelial cell damage and neutrophil H2O2 release. Both effects require adherent neutrophils. Using specific mAb, we showed in this in vitro study that the CD18 beta 2-chain and the CD11b alpha M-chain of the CD11/CD18 integrin heterodimer have a major role in both TNF-alpha-induced neutrophil-mediated detachment of human umbilical vein endothelial cells and H2O2 release by TNF-alpha-activated human neutrophils. In contrast to anti-CD18 mAb, which consistently prevented neutrophil activation, anti-CD11a mAb and two of three anti-CD11b mAb did not reduce endothelial cell detachment and neutrophil H2O2 release, although they decreased neutrophil adhesion to human umbilical vein endothelial cells. mAb 904, directed against the bacterial LPS binding region of CD11b, reduced endothelial cell detachment for about 40% and neutrophil H2O2 release for more than 50%, demonstrating that CD11b/CD18 is engaged in TNF-induced neutrophil activation. Dependence on CD11b/CD18 could not be overcome by CD18-independent anchoring of neutrophils via PHA. Additionally, neither induction of increased expression of the endothelial cell adhesion molecules ICAM-1 and ELAM-1, nor subsequent addition of specific mAb, influenced endothelial cell injury or H2O2 release by TNF-activated neutrophils. Interaction with ICAM-1 and ELAM-1 therefore appears not to induce additional activation of TNF-stimulated neutrophils. These studies suggest that a specific, CD11b/CD18-mediated signal, instead of adherence only, triggers toxicity of TNF-activated neutrophils.  相似文献   

6.
Lipopolysaccharide (endotoxin) tolerance is well described in monocytes and macrophages, but is less well characterized in endothelial cells. Because intestinal microvascular endothelial cells exhibit a strong immune response to LPS challenge and play a critical regulatory role in gut inflammation, we sought to characterize the activation response of these cells to repeated LPS exposure. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were stimulated with LPS over 6-60 h and activation was assessed using U937 leukocyte adhesion, expression of E-selectin, ICAM-1, VCAM-1, IL-6, IL-8, manganese superoxide dismutase, HLA-DR, and CD86. Effect of repeat LPS stimulation on HIMEC NF-kappaB and mitogen-activated protein kinase (MAPK) activation, generation of superoxide anion, and Toll-like receptor 4 expression was characterized. LPS pretreatment of HIMEC for 24-48 h significantly decreased leukocyte adhesion after subsequent LPS stimulation. LPS pretreatment inhibited expression of E-selectin, VCAM-1, IL-6, and CD86, while ICAM-1, IL-8, and HLA-DR were not altered. Manganese superoxide dismutase expression increased with repeated LPS stimulation, with a reduction in intracellular superoxide. NF-kappaB activation was transiently inhibited by LPS pretreatment for 6 h, but not at later time points. In contrast, p44/42 MAPK, p38 MAPK, and c-Jun N-terminal kinase activation demonstrated inhibition by LPS pretreatment 24 or 48 h prior. Toll-like receptor 4 expression on HIMEC was not altered by LPS. HIMEC exhibit endotoxin tolerance after repeat LPS exposure in vitro, characterized by diminished activation and intracellular superoxide anion concentration, and reduced leukocyte adhesion. HIMEC possess specific mechanisms of immunoregulatory hyporesponsiveness to repeated LPS exposure.  相似文献   

7.
Interleukin 1 (IL-1) alters several potentially pathogenic endothelial cell (EC) functions. The authors report here that recombinant human IL-1 (rIL-1) alpha (0.1 to 10 ng/ml) or IL-1-beta (1 to 100 ng/ml) induce concentration- and time-dependent increases in IL-1-beta mRNA levels in EC derived from adult human saphenous vein. rIL-1 induced IL-1-alpha mRNA only in EC treated concomitantly with cycloheximide (2 micrograms/ml). IL-1-beta mRNA production began within 1 hr of exposure to rIL-1, peaked after 24 hr, and declined thereafter. Actinomycin D prevented the appearance of IL-1 mRNA in rIL-1-treated EC. rIL-1 also induced the release of biologically active IL-1 from EC, which was inhibited by cycloheximide (1 microgram/ml). When compared on the basis of their activity in the thymocyte costimulation assay, rIL-1-alpha and rIL-1-beta were equipotent as inducers of IL-1 production by EC. EC stimulated with rIL-1 produced prostaglandin E2, which inhibits IL-1 production by other cell types and also decreases the responsiveness of thymocytes to IL-1. When EC were exposed to rIL-1 in the presence of indomethacin (1 microgram/ml), which blocked prostaglandin E2 production, greater amounts of rIL-1-induced IL-1 release were detected, although the inhibitor did not affect IL-1-beta mRNA levels. IL-1-induced IL-1 production was unlikely to be caused by endotoxin contamination of tissue culture media or IL-1 preparations, because the lipopolysaccharide (LPS) antagonist polymyxin B (10 micrograms/ml) blocked LPS-induced IL-1 production by EC but did not affect IL-1 release in response to rIL-1-beta (100 ng/ml). The IL-1-inducing property of rIL-1-beta was heat-labile, whereas heated LPS stimulated EC IL-1 production. The source of IL-1 in our cultures was not monocyte/macrophages, as treatment of EC with monoclonal antibody to the monocyte antigen Mo2 under conditions that lysed adherent peripheral blood monocytes did not affect production of IL-1 by EC in response to LPS (1 microgram/ml) or rIL-1-beta (100 ng/ml). IL-1 elicits a coordinated program of altered endothelial function that increases adhesiveness for leukocytes and coagulability. IL-1-induced IL-1 gene expression in human adult EC could thus provide a positive feedback mechanism in the pathogenesis of vascular disease including atherosclerosis, vasculitis, and allograft rejection.  相似文献   

8.
The present studies were performed to explore potentially selective mechanisms of leukocyte adhesion in an attempt to understand how preferential recruitment of eosinophils and basophils might occur during allergic and other inflammatory reactions. Stimulation of human vascular endothelial cells for 24 h with IL-4 (30 to 1,000 U/ml) induced adhesion for eosinophils (up to approximately four-fold of control) and basophils (up to approximately twofold of control) but not neutrophils (less than 125% of control). Analysis of endothelial expression of adhesion molecules by flow cytometry revealed that IL-4 treatment induced vascular cell adhesion molecule-1 (VCAM-1) expression without significantly affecting the expression of other adhesion molecules, namely endothelial-leukocyte adhesion molecule-1 (ELAM-1) or intercellular adhesion molecule-1 (ICAM-1). The concentration-response curve for IL-4-induced VCAM-1 expression paralleled that for adhesion. Endothelial cells stimulated with IL-4 expressed adhesive properties for eosinophils by 3 h; the response increased steadily during a 24-h time course study. Eosinophils and basophils adhered to plates coated with a recombinant form of VCAM-1. This adhesion was blocked with antibodies to VCAM-1 but not ELAM-1. mAb directed against either VCAM-1 or VLA-4 inhibited (by approximately 75%) the binding of eosinophils and basophils to IL-4-stimulated endothelial cells. Because VLA-4 and VCAM-1 have been demonstrated to bind to each other in other adhesion systems, these results suggest that IL-4 stimulates eosinophil and basophil adhesion by inducing endothelial cell expression of VCAM-1 which binds to eosinophil and basophil VLA-4. The lack of expression of VLA-4 on neutrophils and the failure of IL-4 to stimulate neutrophil adherence support this conclusion. It is proposed that local release of IL-4 in vivo in allergic diseases or after experimental allergen challenge may partly explain the enrichment of eosinophils and basophils (vs neutrophils) observed in these situations.  相似文献   

9.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

10.
Cell adhesion molecule expression (CAM) and IL-8 release in lung microvascular endothelium facilitate neutrophil accumulation in the lung. This study investigated the effects of lipoteichoic acid (LTA), a cell wall component of Gram-positive bacteria, alone and with LPS or TNF-alpha, on CAM expression and IL-8 release in human lung microvascular endothelial cells (HLMVEC). The concentration-dependent effects of Staphylococcus aureus (S. aureus) LTA (0.3-30 microg/ml) on ICAM-1 and E-selectin expression and IL-8 release were bell shaped. Streptococcus pyogenes (S. pyogenes) LTA had no effect on CAM expression, but caused a concentration-dependent increase in IL-8 release. S. aureus and S. pyogenes LTA (30 microg/ml) abolished LPS-induced CAM expression, and S. aureus LTA reduced LPS-induced IL-8 release. In contrast, the effects of S. aureus LTA with TNF-alpha on CAM expression and IL-8 release were additive. Inhibitory effects of LTA were not due to decreased HLMVEC viability, as assessed by ethidium homodimer-1 uptake. Changes in neutrophil adhesion to HLMVEC paralleled changes in CAM expression. Using RT-PCR to assess mRNA levels, S. aureus LTA (3 microg/ml) caused a protein synthesis-dependent reduction (75%) in LPS-induced IL-8 mRNA and decreased the IL-8 mRNA half-life from >6 h with LPS to approximately 2 h. These results suggest that mechanisms exist to prevent excessive endothelial cell activation in the presence of high concentrations of bacterial products. However, inhibition of HLMVEC CAM expression and IL-8 release ultimately may contribute to decreased neutrophil accumulation, persistence of bacteria in the lung, and increased severity of infection.  相似文献   

11.
Abstract Endotoxin (lipopolysaccharide, LPS) induces the production of mediators of inflammation, which exerts pathophysiological effects such as fever or shock in mammals. In the present study we have investigated the modulation of LPS by the synthetic non-active tetraacylated precursor Ia of lipid A (compound 406) in the induction of tumor necrosis factor (TNF), interleukin 1 (IL-1) and interleukin 6 (IL-6) in human peripheral blood mononuclear cells (PBMC) and in human peripheral blood monocytes (PBMo). PBMC stimulated with LPS released TNF in a concentration dependent manner. Release of biologically active TNF, IL-1 and IL-6 was first detectable 4 h after LPS stimulation. Compound 406 alone in all concentrations tested did not induce TNF, IL-1 or IL-6 release, intracellular TNF or IL-1β, or mRNA for TNF or IL-1. Added to PBMC 1 h before LPS compound 406 enhanced or suppressed TNF release and suppressed IL-1 and IL-6 release depending on the ratio of concentrations between stimulator (LPS) and modulator (compound 406). In contrast to LPS stimulation alone TNF, IL-1 and IL-6 release in presence of compound 406 was delayed and first detectable after 6 to 8 h. Compound 406 was able to suppress LPS-induced intracellular TNF and IL-1β in PBMC. Added to PBMo 1 h before LPS it totally inhibited the production of mRNA for TNF and IL-1. When added to PBMC 1 h after LPS, TNF release was suppressed in a concentration-dependent way and release of biologically active TNF, IL-1 and IL-6 could again be detected for the first time after 4 h. Compound 406 was not able to inhibit phorbol 12-myristate 13-acetate (PMA)-induced TNF and IL-1 release in PBMo which suggests that its modulating effect is LPS-specific. This study provides evidence that the modulating effect of compound 406 on the LPS induction of TNF, IL-, 1 and IL-6 could be due to competitive binding.  相似文献   

12.
The time course of development and decline of the ability of BCG-infected mice to produce interferon in the serum in response to the intravenous infection of purified protein derivative of tuberculin (PPD) was very similar to that of their systemic hypersensitivity to PPD. A cytotoxic factor (cytotoxin) was produced in parallel with interferon in the serum of BCG-infected mice after stimulation with PPD. The duration of the period in which cytotoxin-production responsiveness to PPD was definitely detectable was much shorter than that for interferon-production responsiveness although the periods for the maximum production of interferon and cytotoxin coincided. The kinetics of release of interferon in the serum of BCG-infected mice after stimulation with PPD did not parallel that of release of cytotoxin. The four kinds of activities, interferons and cytotoxins induced by PPD and lipopolysaccharide (LPS) in the serum of BCG-infected mice, were compared for their stability to heating at 56 C and to treatment at pH 2. The kinetics of inactivation of these four activities differed significantly, when the serum was either heated at 56 C or treated at pH 2. Interferon produced in response to LPS could be neutralized by anti-L cell(NDV) interferon rabbit serum as easily as L cell (NDV) interferon, 16 times as much antiserum was required to neutralize the same amount of interferon in response to PPD, but cytotoxins induced by PPD and LPS were not neutralized at all by the antiserum. From these findings it is thought likely that interferons and cytotoxins induced by PPD and LPS in the serum of BCG-infected mice are different substances, although the antigenic relationship between cytotoxins induced by PPD and LPS remains unknown.  相似文献   

13.
14.
Bacterial adherence to human endothelial cells   总被引:3,自引:0,他引:3  
The adult respiratory distress syndrome (ARDS) is frequently caused by exposure of the lung endothelium to circulating endotoxin (lipopolysaccharide, LPS) and pulmonary infections frequently develop during the course of ARDS. The present studies demonstrate that LPS and interleukin 1 (IL-1, a mediator released by endothelial cells after exposure to LPS) enhance the adherence of Staphylococcus aureus to human umbilical vein endothelial cells. gamma-Interferon, another mediator that induces expression of some cell surface antigens on endothelial cells, had no effect on bacterial adherence. The adherence of bacteria to endothelium was increased by prior opsonization of the bacteria with fresh human serum and was reduced by prior absorption of the serum with bacteria before the use of the serum for opsonization. The capacity of LPS to increase bacterial adherence was time dependent and was maximally expressed after 6 h of exposure; it was blocked by exposure of endothelial cells to LPS in the presence of reduced temperature or dactinomycin (Actinomycin D). These observations suggest that circulating LPS not only can trigger the development of ARDS but also may predispose the lung to the development of pulmonary infections by increasing adherence of bacteria to endothelium.  相似文献   

15.
Protease-activated receptors (PARs) are involved in the contribution of airway epithelial cells to the development of inflammation by release of pro- and anti-inflammatory mediators. Here, we evaluated in epithelial cells the influence of LPS and continuous PAR activation on PAR expression level and the release of the proinflammatory chemokine IL-8. We studied primary human small airway epithelial cells and two airway epithelial cell lines, A549 and HBE cells. LPS specifically upregulated expression of PAR-2 but not of PAR-1. Exposure of epithelial cells to PAR-1 or PAR-2 agonists increased the PAR-1 expression level. The PAR-2 agonist exhibited higher potency than PAR-1 activators. However, the combined exposure of epithelial cells to LPS and PAR agonists abrogated the PAR-1 upregulation. The PAR-2 expression level was also upregulated after exposure to PAR-1 or PAR-2 agonists. This elevation was higher than the effect of PAR agonists on the PAR-1 level. In contrast to the PAR-1 level, the PAR-2 level remained elevated under concomitant stimulation with LPS and PAR-2 agonist. Furthermore, activation of PAR-2, but not of PAR-1, caused production of IL-8 from the epithelial cells. Interestingly, both in the epithelial cell line and in primary epithelial cells, there was a potentiation of the stimulation of the IL-8 synthesis and release by PAR-2 agonist together with LPS. In summary, these results underline the important role of PAR-2 in human lung epithelial cells. Moreover, our study shows an intricate interplay between LPS and PAR agonists in affecting PAR regulation and IL-8 production.  相似文献   

16.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

17.
MAC-T cells, an established bovine mammary epithelial cell line, were utilized to investigate both expression of interleukin-1 (IL-1) mRNA and secretion of IL-1 after Escherichia coli lipopolysaccharide (E. coli LPS) stimulation. In addition, recombinant human IL-1beta, recombinant human IL-1 receptor antagonist (IL-1ra) and a neutralizing goat antibody against type I human IL-1 receptor were used to study the involvement of IL-1 in the release of IL-8. The expression of MAC-T derived IL-1alpha mRNA was correlated to production of IL-1alpha protein as measured by an IL-1alpha sandwich ELISA. Secretion of IL-1alpha was dose- and time-dependent, with a maximal level of 600 pg/ml detectable upon 2-h stimulation with 20 microg of LPS per ml. IL-1ra and the neutralizing antibody significantly blocked the ability of IL-1beta to stimulate secretion of IL-8 by MAC-T cells. During this study, we have demonstrated that MAC-T cells secrete IL-1 in response to LPS stimulation and IL-1 is an important mediator for the release of the bovine IL-8 by MAC-T cells. These results further indicate the potential importance of mammary epithelial cells as a source of immunoregulation in the mammary gland via cytokine elaboration.  相似文献   

18.
Excessive mechanical ventilation exerts pathologic mechanical strain on lung vascular endothelium and promotes endothelial cell (EC) inflammatory activation; however, the specific mechanisms underlying EC inflammatory response caused by mechanical ventilation related cyclic stretch (CS) remain unclear. This study investigated the effects of chronic exposure to CS at physiologic (5%) and pathologic (18%) magnitude on pulmonary EC inflammatory status in control conditions and bacterial lipopolysacharide (LPS)-stimulated conditions. EC exposure to high or low CS magnitudes for 28–72 hrs had distinct effects on EC inflammatory activation. 18% CS increased surface expression of endothelial adhesion molecule ICAM1 and release of its soluble form (sICAM1) and inflammatory cytokine IL-8 by CS-stimulated pulmonary endothelial cells (EC). EC inflammatory activation was not observed in EC exposed to 5% CS. Chronic exposure to 18% CS, but not to 5% CS, augmented ICAM1 and IL-8 production and EC monolayer barrier disruption induced by LPS. 18% CS, but not 5% CS, stimulated expression of RhoA GTPase-specific guanine nucleotide exchange factor GEF-H1. GEF-H1 knockdown using gene-specific siRNA abolished 18% CS-induced ICAM1 expression and sICAM1 and IL-8 release by EC. GEF-H1 knockdown also prevented disruption of EC monolayer integrity and attenuated sICAM1 and IL-8 release in the two-hit model of EC barrier dysfunction caused by combined stimulation with 18% CS and LPS. These data demonstrate that exacerbation of inflammatory response by pulmonary endothelium exposed to excessive mechanical stretch is mediated by CS-induced induction of Rho activating protein GEF-H1.  相似文献   

19.
Abstract The aim of this study was to determine whether lipid A-associated proteins (LAP) from two periodontopathogenic species of bacteria were able to stimulate interleukin-6 (IL-6) release from human gingival fibroblasts and myelomonocytic cells. LAP and lipopolysaccharide (LPS) were extracted from Porphyromonas gingivalis and Prevotella intermedia and added to cultures of human gingival fibroblasts and mono-mac-6 monocytic cells. Release of IL-6 into the culture supermatants was determined by ELISA. LAP and LPS from Por. gingivalis , but not from Prev. intermedia , stimulated IL-6 release from both cell types in a dose-dependent manner although LPS was less potent than LAP in inducing IL-6 release from the fibroblasts. IL-6 was detectable in cultures of both cell types following stimulation with LAP from Por. gingivalis at a concentration as low as 10 ng/ml. In response to LAP from Prev. intermedia , IL-6 was produced by mono-mac-6 cells but not by fibroblasts. Our results show that bacterial cell wall components other than LPS can induce IL-6 release from cells of the periodontium in vitro. The production of such potent immunomodulatory agents in vivo may contribute to the connective tissue breakdown characteristic of chronic periodontitis.  相似文献   

20.
It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号