首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Ito H  Gray WM 《Plant physiology》2006,142(1):63-74
Arabidopsis (Arabidopsis thaliana) contains 15 genes encoding members of the pleiotropic drug resistance (PDR) family of ATP-binding cassette transporters. These proteins have been speculated to be involved in the detoxification of xenobiotics, however, little experimental support of this hypothesis has been obtained to date. Here we report our characterization of the Arabidopsis PDR9 gene. We isolated a semidominant, gain-of-function mutant, designated pdr9-1, that exhibits increased tolerance to the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Reciprocally, loss-of-function mutations in PDR9 confer 2,4-D hypersensitivity. This altered auxin sensitivity defect of pdr9 mutants is specific for 2,4-D and closely related compounds as these mutants respond normally to the endogenous auxins indole-3-acetic acid and indole-butyric acid. We demonstrate that 2,4-D, but not indole-3-acetic acid transport is affected by mutations in pdr9, suggesting that the PDR9 transporter specifically effluxes 2,4-D out of plant cells without affecting endogenous auxin transport. The semidominant pdr9-1 mutation affects an extremely highly conserved domain present in all known plant PDR transporters. The single amino acid change results in increased PDR9 abundance and provides a novel approach for elucidating the function of plant PDR proteins.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Overexpression of the yeast Pdr5 ATP-binding cassette transporter leads to pleiotropic drug resistance to a variety of structurally unrelated cytotoxic compounds. To identify Pdr5 residues involved in substrate recognition and/or drug transport, we used a combination of random in vitro mutagenesis and phenotypic screening to isolate novel mutant Pdr5 transporters with altered substrate specificity. A plasmid library containing randomly mutagenized PDR5 genes was transformed into appropriate drug-sensitive yeast cells followed by phenotypic selection of Pdr5 mutants. Selected mutant Pdr5 transporters were analyzed with respect to their expression levels, subcellular localization, drug resistance profiles to cycloheximide, rhodamines, antifungal azoles, steroids, and sensitivity to the inhibitor FK506. DNA sequencing of six PDR5 mutant genes identified amino acids important for substrate recognition, drug transport, and specific inhibition of the Pdr5 transporter. Mutations were found in each nucleotide-binding domain, the transmembrane domain 10, and, most surprisingly, even in predicted extracellular hydrophilic loops. At least some point mutations identified appear to influence folding of Pdr5, suggesting that the folded structure is a major substrate specificity determinant. Surprisingly, a S1360F exchange in transmembrane domain 10 not only caused limited substrate specificity, but also abolished Pdr5 susceptibility to inhibition by the immunosuppressant FK506. This is the first report of a mutation in a yeast ATP-binding cassette transporter that allows for the functional separation of substrate transport and inhibitor susceptibility.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号