首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
In most metazoans, the glutathione S-transferases (GST) are encoded by gene families, and are used to detoxify xenobiotics. We describe the structure of genomic loci coding for the GSTs in the housefly that have been implicated, by both genetic and biochemical means, in mediating insecticide resistance. In earlier work, we showed that one of the theta-class enzymes, MdGST-3, is overproduced in resistant flies and degrades certain insecticides. We used a fragment from a cDNA clone of MdGST-3 as a probe to screen a housefly genomic DNA bank in phage λ. This probe detected multiple gst loci. Genes for GSTs were found in five different, nonoverlapping λ clones, three of which carry multiple, closely linked gsts. Multiple genes for both MdGST-3 and MdGST-4 were found; some of which have introns in their 5′ untranslated regions. In adults, the only MdGST-3 enzymes that are expressed are encoded by the intron-free genes. A new theta-class GST (called MdGST-5) was also discovered. Fusion genes comprising 5′ MdGST-3 sequences and either MdGST-4 or MdGST-5 sequences in their 3′ halves were encountered at three separate loci. The genes described here are found in both the ancestral sensitive strain and the insecticide-resistant strains. Received: 28 June 1996 / Accepted: 23 April 1997  相似文献   

2.
3.
Strains of the housefly, Musca domestica, highly resistant to organophosphate (OP) and other insecticides are known because they overproduce glutathione S-transferases (GSTs). Previous work has shown that overproduction in these strains involved numerous isozymes with glutathione conjugating activities (Pesticide Biochem. Physiol., 25 (1986) 169; Mol. General Genetics, 227 (1991) 355; J. Biol. Chem., 267 (1992) 1840; Mol. General Genetics, 245 (1994) 236; J. Mol. Evol., 43 (1996) 236). The current work describes the purification and identification of a M. domestica GST isozyme (pI 7.1) broadly specific for substrates from a housefly strain, Cornell-HR, that is highly resistant against OP-insecticides, and the isolation of two new MdGST genes using the antibody made against it. This isozyme, which was identified from amongst more than 20 isoelectric forms of GSTs of the same subunit size, was highly active for conjugating GSH to the model substrate 3,4-dichloronitrobenzne (DCNB). When expressed in Escherichia coli, one of the cloned GSTs, MdGST-6A, produces an enzyme that conjugates glutathione to the insecticides methyl parathion and lindane. On indication that it was the most active isozyme toward several xenobiotics among several MdGSTs tested, we advance the notion that MdGST-6A probably plays an important role in M. domestica Cornell-HR's resistance towards OP-insecticides. MdGST-6A and a second closely related one found in this work, MdGST-6B, are members of the traditional insect class I family (theta-class) and share the greatest homologies with a cluster of Drosophila GSTs on locus 55. In addition to having the unusually broad substrate specificity, the sequence of the new group of enzymes reveals that it has a highly diverged hydrophobic motif in its active site as compared to other class I GSTs from insects.  相似文献   

4.
Strains of the housefly, Musca domestica, highly resistant to organophosphate (OP) and other insecticides are known because they overproduce glutathione S-transferases (GSTs). Previous work has shown that overproduction in these strains involved numerous isozymes with glutathione conjugating activities (Pesticide Biochem. Physiol., 25 (1986) 169; Mol. General Genetics, 227 (1991) 355; J. Biol. Chem., 267 (1992) 1840; Mol. General Genetics, 245 (1994) 236; J. Mol. Evol., 43 (1996) 236). The current work describes the purification and identification of a M. domestica GST isozyme (pI 7.1) broadly specific for substrates from a housefly strain, Cornell-HR, that is highly resistant against OP-insecticides, and the isolation of two new MdGST genes using the antibody made against it. This isozyme, which was identified from amongst more than 20 isoelectric forms of GSTs of the same subunit size, was highly active for conjugating GSH to the model substrate 3,4-dichloronitrobenzne (DCNB). When expressed in Escherichia coli, one of the cloned GSTs, MdGST-6A, produces an enzyme that conjugates glutathione to the insecticides methyl parathion and lindane. On indication that it was the most active isozyme toward several xenobiotics among several MdGSTs tested, we advance the notion that MdGST-6A probably plays an important role in M. domestica Cornell-HR's resistance towards OP-insecticides. MdGST-6A and a second closely related one found in this work, MdGST-6B, are members of the traditional insect class I family (theta-class) and share the greatest homologies with a cluster of Drosophila GSTs on locus 55. In addition to having the unusually broad substrate specificity, the sequence of the new group of enzymes reveals that it has a highly diverged hydrophobic motif in its active site as compared to other class I GSTs from insects.  相似文献   

5.
Glutathione S-transferases (GST) were characterized from the digestive gland of Cyphoma gibbosum (Mollusca; Gastropoda), to investigate the possible role of these detoxification enzymes in conferring resistance to allelochemicals present in its gorgonian coral diet. We identified the collection of expressed cytosolic Cyphoma GST classes using a proteomic approach involving affinity chromatography, HPLC and nano-spray liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two major GST subunits were identified as putative mu-class GSTs; while one minor GST subunit was identified as a putative theta-class GST, apparently the first theta-class GST identified from a mollusc. Two Cyphoma GST cDNAs (CgGSTM1 and CgGSTM2) were isolated by RT-PCR using primers derived from peptide sequences. Phylogenetic analyses established both cDNAs as mu-class GSTs and revealed a mollusc-specific subclass of the GST-mu clade. These results provide new insights into metazoan GST diversity and the biochemical mechanisms used by marine organisms to cope with their chemically defended prey.  相似文献   

6.
The galactose/N-acetylgalactosamine/N-acetylglucosamine 6-O-sulfotransferases (GSTs) are a family of Golgi-resident enzymes that transfer sulfate from 3'phosphoadenosine 5'phospho-sulfate to the 6-hydroxyl group of galactose, N-acetylgalactosamine, or N-acetylglucosamine in nascent glycoproteins. These sulfation modifications are functionally important in settings as diverse as cartilage structure and lymphocyte homing. To date six members of this gene family have been described in human and in mouse. We have determined the chromosomal localization of these genes as well as their genomic organization. While the broadly expressed enzymes implicated in proteoglycan biosynthesis are located on different chromosomes, the highly tissue specific enzymes GST-3 and 4 are encoded by genes located both in band q23.1--23.2 on chromosome 16. In the mouse, both genes reside in the syntenic region 8E1 on chromosome 8. This cross-species conserved clustering is suggestive of related functional roles for these genes. The human GST4 locus actually contains two highly similar open reading frames (ORF) that are 50 kb apart and encode two highly similar enzyme isoforms termed GST-4 alpha and GST-4 beta. All genes except GST0 (chondroitin 6-O-sulfotransferase) contain intron-less ORFs. With one exception these are fused directly to sequences encoding the 3' untranslated regions (UTR) of the respective mature mRNAs. The 5' UTRs of these mRNAs are usually encoded by a number of short exons 5' of the respective ORF. 5'UTRs of the same enzyme expressed in different cell types are sometimes derived from different exons located upstream of the ORF. The genomic organization of the GSTs resembles that of certain glycosyltransferase gene families.  相似文献   

7.
8.
昆虫谷胱甘肽S-转移酶的基因结构及其表达调控   总被引:2,自引:0,他引:2  
陈凤菊  高希武 《昆虫学报》2005,48(4):600-608
谷胱甘肽S-转移酶(glutathione S-transferases, GSTs)属于一个超家族,目前已从20多种昆虫中克隆得到了近百个GSTs基因序列。这些基因分属于至少3个类别,Ⅰ(Delta)类,Ⅱ类和Ⅲ(Epsilon)类,其中Ⅰ类和Ⅲ类是昆虫特异性的类别。昆虫Ⅰ类GSTs基因通常由多基因家族编码,基因多态性在不同昆虫种类中差异很大。Ⅱ类基因的种类较少,基因的结构较简单,通常是单拷贝基因。Ⅲ类基因是最近才鉴定出来的新类别,目前仅在黑腹果蝇和冈比亚按蚊中明确了其在染色体上的定位。基因簇、可变剪接和基因融合等机制是导致昆虫GSTs基因多态性的主要原因。在抗性昆虫种群中,GSTs表达量的增加有mRNA水平的提高和基因扩增两种机制,但后一种机制的报道很少。GSTs活性的增加是由于属于一类或多类的多个同工酶的增量调控,也有少数是由于单个同工酶的增量调控。GSTs的表达受反式调控元件和顺式调控元件的调控。目前仅有少数含有调节基因的染色体大致位点和可能的调控元件得到鉴定。  相似文献   

9.
Plant Glutathione S-Transferases, a Tale of Theta and Tau   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
姚煜  梁旭方  王琳  栾添  刘理曼 《生态科学》2010,29(4):324-331
鱼类谷胱甘肽S-转移酶(glutathione S-transferase,GST)是鱼类一种重要的Ⅱ相去毒酶,在催化毒素与还原谷胱甘肽(GSH)加合去毒代谢过程中具有关键作用。采用RT-PCR及RACE法,分离、克隆得到草鱼、尼罗罗非鱼pi、mu、theta型GST(GSTpi、GSTmu、GSTtheta)基因、鲢鱼GSTmu、GSTtheta基因的cDNA部分序列并推测各自对应的氨基酸序列。氨基酸序列同源性比较和系统进化分析均表明,鲢鱼、草鱼、尼罗罗非鱼与鱼类GST同源性较高,与哺乳类、鸟类、两栖类GST同源性较低,可能与鱼类GST基因在水环境毒素去毒代谢中承担的特殊功能有关。而不同种鱼类GSTtheta的同源性明显要较GSTpi、GSTmu的同源性低,可能与不同淡水鱼类食性及对毒素耐受性不同有关。用实时荧光定量PCR(RT-PCR)检测三种鱼肝脏中三型GST基因组成型表达水平,发现三种鱼各型之间皆有一定差异,尼罗罗非鱼肝脏整体GSTs基因表达很低,GSTtheta显著低于草鱼(P<0.05),GSTmu显著低于鲢鱼(P<0.05)。本研究为从分子水平上研究不同型谷胱甘肽S-转移酶基因在不同食性淡水鱼类体内代谢去毒过程中的作用提供了基础。  相似文献   

12.
Crystal structure of a theta-class glutathione transferase.   总被引:1,自引:0,他引:1  
M C Wilce  P G Board  S C Feil    M W Parker 《The EMBO journal》1995,14(10):2133-2143
Glutathione S-transferases (GSTs) are a family of enzymes involved in the cellular detoxification of xenotoxins. Cytosolic GSTs have been grouped into four evolutionary classes for which there are representative crystal structures of three of them. Here we report the first crystal structure of a theta-class GST. So far, all available GST crystal structures suggest that a strictly conserved tyrosine near the N-terminus plays a critical role in the reaction mechanism and such a role has been convincingly demonstrated by site-directed mutagenesis. Surprisingly, the equivalent residue in the theta-class structure is not in the active site, but its role appears to have been replaced by either a nearby serine or by another tyrosine residue located in the C-terminal domain of the enzyme.  相似文献   

13.
One of the four glutathione-S-transferases (GST) that is overproduced in the insecticide-resistant Cornell-R strain of the housefly (Musca domestica) produces an activity that degrades the insecticide dimethyl parathion and conjugates glutathione to lindane. In earlier work, it was shown that the resistant Cornell-R carries an amplification, probably a duplication, of one or more of its GST loci and that this amplification is directly related to resistance. Using polymerase chain reaction (PCR) amplification with genomic DNA, multiple copies of the gene encoding the parathion-degrading activity (called MdGst-3) were subcloned from both the ancestral, insecticide-susceptible strain BPM and from the insecticide-resistant Cornell-R. In BPM, three different MdGst-3 genes were identified while in Cornell-R, 12 different MdGst-3 sequences were found that, though closely related to ancestral genes, had diverged by a few nucleotides. This diversity in MdGst-3 genomic sequences in Cornell-R is reflected in the expressed sequences, as sampled through a cDNA bank. Population heterozygosity cannot account for these multiple GST genes. We suggest that selection for resistance to insecticides has resulted in not only amplification of the MdGst-3 genes but also in the divergence of sequence between the amplified copies. Received: 22 November 1995 / Accepted: 23 February 1996  相似文献   

14.
Glutathione S-transferases (GSTs: EC2.5.1.18) are a superfamily of multifunctional dimeric enzymes that catalyze the conjugation of glutathione (GSH) to electrophilic chemicals. In most animals and in humans, GSTs are the principal enzymes responsible for detoxifying the mycotoxin aflatoxin B1 (AFB1) and GST dysfunction is a known risk factor for susceptibility towards AFB1. Turkeys are one of the most susceptible animals known to AFB1, which is a common contaminant of poultry feeds. The extreme susceptibility of turkeys is associated with hepatic GSTs unable to detoxify the highly reactive and electrophilic metabolite exo-AFB1-8,9-epoxide (AFBO). In this study, comparative genomic approaches were used to amplify and identify the α-class tGST genes (tGSTA1.1, tGSTA1.2, tGSTA1.3, tGSTA2, tGSTA3 and tGSTA4) from turkey liver. The conserved GST domains and four α-class signature motifs in turkey GSTs (with the exception of tGSTA1.1 which lacked one motif) confirm the presence of hepatic α-class GSTs in the turkey. Four signature motifs and conserved residues found in α-class tGSTs are (1) xMExxxWLLAAAGVE, (2) YGKDxKERAxIDMYVxG, (3) PVxEKVLKxHGxxxL and (4) PxIKKFLXPGSxxKPxxx. A BAC clone containing the α-class GST gene cluster was isolated and sequenced. The turkey α-class GTS genes genetically map to chromosome MGA2 with synteny between turkey and human α-class GSTs and flanking genes. This study identifies the α-class tGST gene cluster and genetic markers (SNPs, single nucleotide polymorphisms) that can be used to further examine AFB1 susceptibility and resistance in turkeys. Functional characterization of heterologously expressed proteins from these genes is currently underway.  相似文献   

15.
16.
Glutathione transferases (GST) are an ancient superfamily comprising a large number of paralogous proteins in a single organism. This multiplicity of GSTs has allowed the copies to diverge for neofunctionalization with proposed roles ranging from detoxication and oxidative stress response to involvement in signal transduction cascades. We performed a comparative genomic analysis using FlyBase annotations and Drosophila melanogaster GST sequences as templates to further annotate the GST orthologs in the 12 Drosophila sequenced genomes. We found that GST genes in the Drosophila subgenera have undergone repeated local duplications followed by transposition, inversion, and micro-rearrangements of these copies. The colinearity and orientations of the orthologous GST genes appear to be unique in many of the species which suggests that genomic rearrangement events have occurred multiple times during speciation. The high micro-plasticity of the genomes appears to have a functional contribution utilized for evolution of this gene family.  相似文献   

17.
18.
19.
20.
J L DeJong  T Mohandas  C P Tu 《Genomics》1990,6(2):379-382
The microsomal glutathione S-transferase (GST) is a unique membrane-bound GST structurally distinct from the cytosolic GSTs. A cDNA encoding this 154 amino acid protein has recently been isolated and characterized. Using the cDNA as the hybridization probe, we now report the assignment of the human microsomal GST gene to chromosome 12 through the use of a panel of mouse-human somatic cell hybrid lines. This locus has recently been designated as GST 12. In addition, genomic Southern blotting data suggest that the human microsomal GST is encoded by a single- or very-low-copy gene. Therefore, the human GST gene superfamily resides on at least four separate chromosomes: 1 (GST 1), 6 (GST 2), 11 (GST 3), and 12 (GST 12).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号