首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
82 of the 155 chloroplast introns in Euglena gracilis have been categorized as group II introns. Because they are shorter and more divergent than group II introns from other organisms, the assignment of these Euglena introns to the group II class has been questioned. In the current study, two homologs of E. gracilispetB intron 1 and four homologs of psbC intron 2 have been isolated from related species and characterized. Based on a comparative sequence analysis of intron homologs, the intron core and four of the six helical domains present in the canonical group II intron structural model are conserved in E. gracilispetB intron 1 and psbC intron 2 and all of their homologs. Distal portions of domain I, which are involved in most of the tertiary interactions, are less well conserved than the central core. Received: 27 June 1997 / Accepted: 6 August 1997  相似文献   

2.
3.
The mtDNA rnl-U7 region has been examined for the presence of introns in selected species of the genus Ceratocystis. Comparative sequence analysis identified group I and group II introns encoding single and double motif LAGLIDADG open reading frames (ORFs) at the following positions L1671, L1787, and L1923. In addition downstream of the rnl-U7 region group I introns were detected at positions L1971 and L2231, and a group II intron at L2059. A GIY-YIG type ORF was located within one mL1923 LAGLIDADG type ORF and a degenerated GIY-YIG ORF fused to a nad2 gene fragment was found in association with the mL1971 group I intron. The diversity of composite elements that appear to be sporadically distributed among closely related species of Ceratocystis illustrates the potential for homing endonucleases and their associated introns to invade new sites. Phylogenetic analysis showed that single motif LADGLIDADG ORFs related to the mL1923 ORFs have invaded the L1787 group II intron and the L1671 group I intron. Phylogenetic analysis of intron encoded single and double motif LAGLIDADG ORFs also showed that these ORFs transferred four times from group I into group II B1 type introns.  相似文献   

4.
The DEAD-box proteins CYT-19 in Neurospora crassa and Mss116p in Saccharomyces cerevisiae are broadly acting RNA chaperones that function in mitochondria to stimulate group I and group II intron splicing and to activate mRNA translation. Previous studies showed that the S. cerevisiae cytosolic/nuclear DEAD-box protein Ded1p could stimulate group II intron splicing in vitro. Here, we show that Ded1p complements mitochondrial translation and group I and group II intron splicing defects in mss116Δ strains, stimulates the in vitro splicing of group I and group II introns, and functions indistinguishably from CYT-19 to resolve different nonnative secondary and/or tertiary structures in the Tetrahymena thermophila large subunit rRNA-ΔP5abc group I intron. The Escherichia coli DEAD-box protein SrmB also stimulates group I and group II intron splicing in vitro, while the E. coli DEAD-box protein DbpA and the vaccinia virus DExH-box protein NPH-II gave little, if any, group I or group II intron splicing stimulation in vitro or in vivo. The four DEAD-box proteins that stimulate group I and group II intron splicing unwind RNA duplexes by local strand separation and have little or no specificity, as judged by RNA-binding assays and stimulation of their ATPase activity by diverse RNAs. In contrast, DbpA binds group I and group II intron RNAs nonspecifically, but its ATPase activity is activated specifically by a helical segment of E. coli 23S rRNA, and NPH-II unwinds RNAs by directional translocation. The ability of DEAD-box proteins to stimulate group I and group II intron splicing correlates primarily with their RNA-unwinding activity, which, for the protein preparations used here, was greatest for Mss116p, followed by Ded1p, CYT-19, and SrmB. Furthermore, this correlation holds for all group I and group II intron RNAs tested, implying a fundamentally similar mechanism for both types of introns. Our results support the hypothesis that DEAD-box proteins have an inherent ability to function as RNA chaperones by virtue of their distinctive RNA-unwinding mechanism, which enables refolding of localized RNA regions or structures without globally disrupting RNA structure.  相似文献   

5.
6.
7.
8.
Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns''own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications of this interesting observation for trans-splicing of group I introns.  相似文献   

9.
10.
Mitochondrial introns in flowering plant genes are virtually all classified as members of the group II ribozyme family although certain structural features have degenerated to varying degrees over evolutionary time. We are interested in the impact that unconventional intron architecture might have on splicing biochemistry in vivo and we have focused in particular on intronic domains V and VI, which for self-splicing introns provide a key component of the catalytic core and the bulged branchpoint adenosine, respectively. Notably, the two transesterification steps in classical group II splicing are the same as for nuclear spliceosomal introns and release the intron as a lariat. Using RT-PCR and circularized RT-PCR, we had previously demonstrated that several wheat mitochondrial introns which lack a branchpoint adenosine have atypical splicing pathways, and we have now extended this analysis to the full set of wheat introns, namely six trans-splicing and sixteen cis-splicing ones. A number of introns are excised using non-lariat pathways and interestingly, we find that several introns which do have a conventional domain VI also use pathways that appear to exploit other internal or external nucleophiles, with the lariat form being relatively minor. Somewhat surprisingly, several introns with weakly-structured domain V/VI helices still exhibit classical lariat splicing, suggesting that accessory factors aid in restoring a splicing-competent conformation. Our observations illustrate that the loss of conventional group II features during evolution is correlated with altered splicing biochemistry in an intron-distinctive manner.  相似文献   

11.
12.
Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3′ terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.  相似文献   

13.
The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns.  相似文献   

14.
The B.c.I4 group II intron from Bacillus cereus ATCC 10987 harbors an unusual 3′ extension. Here, we report the discovery of four additional group II introns with a similar 3′ extension in Bacillus thuringiensis kurstaki 4D1 that splice at analogous positions 53/56 nt downstream of domain VI in vivo. Phylogenetic analyses revealed that the introns are only 47–61% identical to each other. Strikingly, they do not form a single evolutionary lineage even though they belong to the same Bacterial B class. The extension of these introns is predicted to form a conserved two-stem–loop structure. Mutational analysis in vitro showed that the smaller stem S1 is not critical for self-splicing, whereas the larger stem S2 is important for efficient exon ligation and lariat release in presence of the extension. This study clearly demonstrates that previously reported B.c.I4 is not a single example of a specialized intron, but forms a new functional class with an unusual mode that ensures proper positioning of the 3′ splice site.  相似文献   

15.
16.
C Schmelzer  R J Schweyen 《Cell》1986,46(4):557-565
Group II intron bl1 from yeast mitochondria can undergo self-splicing in vitro. Exons become correctly ligated, and the excised intron has a lariat structure similar to that of introns from nuclear mRNA. The branch point of the bl1 lariat is located eight or nine nucleotides upstream of the 3' end of the intron and is part of a hairpin structure that is well conserved among group II introns. Several mutations next to the branch point and in other parts of the core structure of group II introns are shown to affect lariat formation. One of them, carried by strain M4873, abolishes splicing in vivo and in vitro, apparently by changing the architecture of the hairpin structure containing the branch point. Similarities between group II introns and nuclear pre-mRNA introns are discussed in terms of evolutionary relatedness.  相似文献   

17.
18.
Intron conservation, intron gain or loss and putative intron sliding events were determined for a set of three genes (SPO11, MRE11 and DMC1) involved in basic aspects of recombination in eukaryotes. These are ancient genes and present in nearly all of the major kingdoms. MRE11 is of bacterial origin and can be found in all kingdoms. DMC1 is a specialized homolog of the bacterial RecA protein, whereas the SPO11 gene is of archaebacterial origin. Only unique homologs of SPO11 are found in animals and fungi whereas three distantly related SPO11 copies are present in plant genomes. A comparison of the respective intron positions and phases of all genes was performed, demonstrating that a quarter of the intron positions were perfectly conserved over more than 1000000000 years. Regarding the remaining three quarters of the introns we found insertions to be about three times more frequent than deletions. Aligning the introns of the three different SPO11 homologs of Arabidopsis thaliana we propose a conclusive model of their evolution. We postulate that at least one duplication event occurred shortly after the divergence of plants from animals and fungi and that a respective homolog has been retained in a protist group, the apicomplexa.  相似文献   

19.
The 3' regions of several group II introns within the mitochondrial genes nad1 and nad7 show unexpected sequence divergence among flowering plants, and the core domains 5 and 6 are predicted to have weaker helical structure than those in self-splicing group II introns. To assess whether RNA editing improves helical stability by the conversion of A-C mispairs to A-U pairs, we sequenced RT-PCR amplification products derived from excised intron RNAs or partially spliced precursors. Only in some cases was editing observed to strengthen the predicted helices. Moreover, the editing status within nad1 intron 1 and nad7 intron 4 was seen to differ among plant species, so that homologous intron sequences shared lower similarity at the RNA level than at the DNA level. Plant-specific variation was also seen in the length of the linker joining domains 5 and 6 of nad7 intron 3; it ranged from 4 nt in wheat to 11 nt in soybean, in contrast to the 2-4 nt length typical of classical group II introns. However, this intron is excised as a lariat structure with a domain 6 branchpoint adenosine. Our observations suggest that the core structures and sequences of these plant mitochondrial introns are subject to less stringent evolutionary constraints than conventional group II introns.  相似文献   

20.
Group II introns are ribozymes that catalyze a splicing reaction with the same chemical steps as spliceosome-mediated splicing. Many group II introns have lost the capacity to self-splice while acquiring compensatory interactions with host-derived protein cofactors. Degenerate group II introns are particularly abundant in the organellar genomes of plants, where their requirement for nuclear-encoded splicing factors provides a means for the integration of nuclear and organellar functions. We present a biochemical analysis of the interactions between a nuclear-encoded group II splicing factor and its chloroplast intron target. The maize (Zea mays) protein Chloroplast RNA Splicing 1 (CRS1) is required specifically for the splicing of the group II intron in the chloroplast atpF gene and belongs to a plant-specific protein family defined by a recently recognized RNA binding domain, the CRM domain. We show that CRS1's specificity for the atpF intron in vivo can be explained by CRS1's intrinsic RNA binding properties. CRS1 binds in vitro with high affinity and specificity to atpF intron RNA and does so through the recognition of elements in intron domains I and IV. These binding sites are not conserved in other group II introns, accounting for CRS1's intron specificity. In the absence of CRS1, the atpF intron has little uniform tertiary structure even at elevated [Mg2+]. CRS1 binding reorganizes the RNA, such that intron elements expected to be at the catalytic core become less accessible to solvent. We conclude that CRS1 promotes the folding of its group II intron target through tight and specific interactions with two peripheral intron segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号