首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We have isolated a Saccharomyces cerevisiae mutant that shows an increased tendency to form cytoplasmic petites (respiration-deficient ρ or ρ0 mutants) in response to treatment of cells growing on a solid medium with the DNA-damaging agent methyl methanesulfonate or ultraviolet light. The mutation in this strain, atm1-1, was found to cause a single amino acid substitution in ATM1, a nuclear gene that encodes the mitochondrial ATP-binding cassette (ABC) transporter. When the mutant cells were grown in liquid glucose medium, they accumulated free iron within the mitochondria and at the same time gave rise to spontaneous cytoplasmic petite mutants, as seen previously in cells carrying a mutation in a gene homologous to the human gene responsible for Friedreich's ataxia. Analysis of the effects of free iron and malonic acid (an inhibitor of oxidative respiration in mitochondria) on the incidence of petites among the mutant cells indicated that spontaneous induction of petites was a consequence of oxidative stress rather than a direct effect of either a defect in the ATM1 gene or the accumulation of free iron. We observed an increase in the incidence of strand breaks in the mitochondrial DNA of the atm1-1 mutant cells. Furthermore, we found that rates of induction of petites and accumulation of strand breaks in mitochondrial DNA were enhanced in the atm1-1 mutant by the introduction of another mutation, mhr1-1, which results in a deficiency in mitochondrial DNA repair. These observations indicate that spontaneous induction of petites in the atm1-1 mutant is a consequence of oxidative damage to mitochondrial DNA mediated by enhanced accumulation of mitochondrial iron. Received: 26 March 1999 / Accepted: 29 June 1999  相似文献   

2.
Mitochondrial DNA replication was examined in mutants for seven different Saccharomyces cerevisiae genes which are essential for nuclear DNA replication. In cdc8 and cdc21, mutants defective in continued replication during the S phase of the cell cycle, mitochondrial DNA replication ceases at the nonpermissive temperature. Replication is temperature sensitive even when these mutants are arrested in the G1 phase of the cell cycle with α factor, a condition where mitochondrial DNA replication continues for the equivalent of several generations at the permissive temperature. Therefore the cessation of replication results from a defect in mitochondrial replication per se, rather than from an indirect consequence of cells being blocked in a phase of the cell cycle where mitochondrial DNA is not normally synthesized. Since the temperature-sensitive mutations are recessive, the products of genes cdc8 and cdc21 must be required for both nuclear and mitochondrial DNA replication. In contrast to cdc8 and cdc21, mitochondrial DNA replication continues for a long time at the nonpermissive temperature in five other cell division cycle mutants in which nuclear DNA synthesis ceases within one cell cycle: cdc4, cdc7, and cdc28, which are defective in the initiation of nuclear DNA synthesis, and cdc14 and cdc23, which are defective in nuclear division. The products of these genes, therefore, are apparently not required for the initiation of mitochondrial DNA replication.  相似文献   

3.
4.
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.  相似文献   

5.
Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Using Saccharomyces cerevisiae as a model organism, we analyzed the consequences of disrupting mitochondrial function on mutagenesis of the nuclear genome. We measured the frequency of canavanine-resistant colonies as a measure of nuclear mutator phenotype. Our data suggest that mitochondrial dysfunction leads to a nuclear mutator phenotype (i) when oxidative phosphorylation is blocked in wild-type yeast at mitochondrial complex III by antimycin A and (ii) in mutant strains lacking the entire mitochondrial genome (rho0) or those with deleted mitochondrial DNA (rho). The nuclear mutation frequencies obtained for antimycin A-treated cells as well as for rho and rho0 cells were ~2- to 3-fold higher compared to untreated control and wild-type cells, respectively. Blockage of oxidative phosphorylation by antimycin A treatment led to increased intracellular levels of reactive oxygen species (ROS). In contrast, inactivation of mitochondrial activity (rho and rho0) led to decreased intracellular levels of ROS. We also demonstrate that in rho0 cells the REV1, REV3 and REV7 gene products, all implicated in error-prone translesion DNA synthesis (TLS), mediate mutagenesis in the nuclear genome. However, TLS was not involved in nuclear DNA mutagenesis caused by inhibition of mitochondrial function by antimycin A. Together, our data suggest that mitochondrial dysfunction is mutagenic and multiple pathways are involved in this nuclear mutator phenotype.  相似文献   

6.
Summary The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungusUstilago maydis after incubation at the restrictive temperature (32° C) for eight hours. Mutantsts-220,ts-207,ts-432 andts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutantsts-20,tsd 1-1,ts-84 andpol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutantpol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutantts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32°C.tsd 1-1 andts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis with correlates to increasing UV sensitivity of these strains on incubation at 32° C. Apol 1-1ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.  相似文献   

7.
Aphidicolin is a highly specific inhibitor of DNA polymerase α and has been most useful for assessing the role of this enzyme in various replication processes (J. A. Huberman, Cell 23:647-648, 1981). Both nuclear DNA replication and simian virus 40 DNA replication are highly sensitive to this drug (Krokan et al., Biochemistry 18:4431-4443, 1979), whereas mitochondrial DNA synthesis is completely insensitive (Zimmerman et al., J. Biol. Chem. 255:11847-11852, 1980). Adenovirus DNA replication is sensitive to aphidicolin, but only at much higher concentrations. These patterns of sensitivity are seen both in vivo and in vitro (Krokan et al., Biochemistry 18:4431-4443, 1979). A temperature-sensitive mutant of adenovirus type 5 known as H5ts125 is able to complete but not initiate new rounds of replication at nonpermissive temperatures (P. C. van der Vliet and J. S. Sussenbach, Virology 67:415-426, 1975). When cells infected with H5ts125 were shifted from permissive (33°C) to nonpermissive (41°C) conditions, the residual DNA synthesis (elongation) showed a striking increase in sensitivity to aphidicolin. The temperature-sensitive mutation of H5ts125 is in the gene for the 72-kilodalton single-stranded DNA-binding protein. This demonstrated that the increased resistance to aphidicolin shown by adenovirus DNA replication was dependent on that protein. It also supports an elongation role for both DNA polymerase α and the 72-kilodalton single-stranded DNA-binding protein in adenovirus DNA replication. Further support for an elongation role of DNA polymerase α came from experiments with permissive temperature conditions and inhibiting levels of aphidicolin in which it was shown that newly initiated strands failed to elongate to completion.  相似文献   

8.
The nuclear mutation pet ts1402 prevents proteolytic processing of the precursor of cytochrome oxidase subunit 2 (cox2) in Saccharomyces cerevisiae. The structural gene PET1402 was isolated by genetic complementation of the temperature-sensitive mutation. DNA sequence analysis identified a 1206-bp open reading frame, which is located 215 by upstream of the PET122 gene. The DNA sequence of PET1402 predicts a hydrophobic, integral membrane protein with four transmembrane segments and a typical mitochondrial targeting sequence. Weak sequence similarity was found to two bacterial proteins of unknown function. Haploid cells containing a null allelle of PET1402 are respiratory deficient.  相似文献   

9.
A new class of Saccharomyces cerevisiae mutants deficient in biosynthesis of all cytochromes was isolated from cultures grown in medium containing ethidium bromide. Cytochrome c synthesis may be restored to normal by growing mutant cells in medium supplemented with δ-aminolevulinic acid. Cytochrome deficiency results from mutation in two genetic determinants, one nuclear, the other mitochondrial. When cells possess normal (ρ+) mitochondrial DNA, expression of the abnormal nuclear determinant (cyd-1) is largely masked, so that cells can grow on glycerol as primary carbon source and all cytochromes are present. Nevertheless, the presence of the cyd-1 mutation may be detected in ρ+ strains, since synthesis of all cytochromes is enhanced to some extent by δ-aminolevulinic acid. Destruction of mitochondrial DNA unmasks the underlying defect so that cyd-1 ρ? strains are almost completely lacking in detectable cytochromes. Although spectra of cyd-1 ρ+ strains resemble those of cytochrome c (cyc) mutants, cyd-1 mutants represent a new complementation group different from six known cyc groups. Cytochrome c biosynthesis in only one of these six types of cytochrome c mutants, cyc4-1, was restored to normal by δ-aminolevulinic acid. Therefore, since cyc4-1 and cyd-1 are complementary, and segregate independently, δ-aminolevulinic acid synthesis appears to be controlled by at least two nuclear genes, and by one or more genes located in mitochondrial DNA. Glycine does not replace δ-aminolevulinic acid in stimulating cytochrome biosynthesis in cyd-1 or cyc-4 mutants. A regulatory system involving exchange of information between mitochondria and the nuclear-cytosolic compartment is indicated by the results. Studies with isolated mitochondria indicate that a limitation of intra-cellular δ-aminolevulinic acid supply is reflected in mitochondrial composition, not just in numbers of organelles.  相似文献   

10.
The mgi1-4 and mgi2-1 mutants of the petite-negative yeast Kluyveromyces lactis have mutations in the β- and α-subunits of the mitochondrial F1-ATPase, respectively. The mutants are respiratory competent but can form petites with deletions in mitochondrial DNA. In this study a cryptic nuclear mutation (lipB-1) was identified which, in combination with the mgi alleles, displays a synergistic respiratory-deficient phenotype on glycerol medium. The gene defined by the mutation was cloned and shown to encode a polypeptide of 332 amino acids with an N-terminal sequence characteristic of a mitochondrial targeting signal. The deduced protein shares 27% sequence identity with the product of the Escherichia coli lipB gene, which encodes a lipoyl-protein ligase involved in the attachment of lipoyl groups to lipoate-dependent apoproteins. A K. lactis strain carrying a disrupted lipB allele is severely compromised for growth on glycerol medium. The growth defect cannot be rescued by addition of lipoic acid, but cell growth can be restored on medium containing ethanol plus succinate. In addition, it was observed that lipB mutants of K. lactis, unlike the wild-type, are unable to utilize glycine as sole nitrogen source, indicating that activity of the glycine decarboxylase complex (GDC) is also affected. Taken together, these findings suggest that LIPB is the main determinant of the lipoyl-protein ligase activity required for lipoylation of enzymes such as α-ketoacid dehydrogenases and GDC.  相似文献   

11.
The mdm17 mutation causes temperature-dependent defects in mitochondrial inheritance, mitochondrial morphology, and the maintenance of mitochondrial DNA in the yeast Saccharomyces cerevisiae. Defects in mitochondrial transmission to daughter buds and changes in mitochondrial morphology were apparent within 30 min after shifting cells to 37 degrees C, while loss of the mitochondrial genome occurred after 4-24 h at the elevated temperature. The mdm17 lesion mapped to MGM1, a gene encoding a dynamin-like GTPase previously implicated in mitochondrial genome maintenance, and the cloned MGM1 gene complements all of the mdm17 mutant phenotypes. Cells with an mgm1-null mutation displayed aberrant mitochondrial inheritance and morphology. A version of mgm1 mutated in a conserved residue in the putative GTP-binding site was unable to complement any of the mutant defects. It also caused aberrant mitochondrial distribution and morphology when expressed at high levels in cells that also contained a wild-type copy of the gene. Mgm1p was localized to the mitochondrial outer membrane and fractionated as a component of a high molecular weight complex. These results indicate that Mgm1p is a mitochondrial inheritance and morphology component that functions on the mitochondrial surface.  相似文献   

12.
Excessive nuclear or mitochondrial DNA damage can lead to mitochondrial dysfunction, decreased energy production, and increased generation of reactive oxygen species (ROS). Although numerous cell signaling pathways are activated when cells are injured, the ataxia telangiectasia mutant (ATM) protein has emerged as a major regulator of the response to both mitochondrial dysfunction and nuclear DNA double-strand breaks (DSBs). Because mitochondrial dysfunction is often a response to excessive DNA damage, it has been difficult to determine whether nuclear and/or mitochondrial DNA DSBs activate ATM independent of mitochondrial dysfunction. In this study, mitochondrial and nuclear DNA DSBs were generated in the A549 human lung adenocarcinoma cell line by infecting with retroviruses expressing the restriction endonuclease PstI fused to a mitochondrial targeting sequence (MTS) or nuclear localization sequence (NLS) and a hemagglutinin antigen epitope tag (HA). Expression of MTS-PstI-HA or NLS-PstI-HA activated the DNA damage response defined by phosphorylation of ATM, the tumor suppressor protein p53 (TP53), KRAB-associated protein (KAP)-1, and structural maintenance of chromosomes (SMC)-1. Phosphorylated ATM and SMC1 were detected in nuclear fractions, whereas phosphorylated TP53 and KAP1 were detected in both mitochondrial and nuclear fractions. PstI also enhanced expression of the cyclin-dependent kinase inhibitor p21 and inhibited cell growth. This response to DNA damage occurred in the absence of detectable mitochondrial dysfunction and excess production of ROS. These findings reveal that DNA DSBs are sufficient to activate ATM independent of mitochondrial dysfunction and suggest that the activated form of ATM and some of its substrates are restricted to the nuclear compartment, regardless of the site of DNA damage.  相似文献   

13.
Zuo XM  Clark-Walker GD  Chen XJ 《Genetics》2002,160(4):1389-1400
The Saccharomyces cerevisiae MGM101 gene encodes a DNA-binding protein targeted to mitochondrial nucleoids. MGM101 is essential for maintenance of a functional rho(+) genome because meiotic segregants, with a disrupted mgm101 allele, cannot undergo more than 10 divisions on glycerol medium. Quantitative analysis of mtDNA copy number in a rho(+) strain carrying a temperature-sensitive allele, mgm101-1, revealed that the amount of mtDNA is halved each cell division upon a shift to the restrictive temperature. These data suggest that mtDNA replication is rapidly blocked in cells lacking MGM101. However, a small proportion of meiotic segregants, disrupted in MGM101, have rho(-) genomes that are stably maintained. Interestingly, all surviving rho(-) mtDNAs contain an ori/rep sequence. Disruption of MGM101 in hypersuppressive (HS) strains does not have a significant effect on the propagation of HS rho(-) mtDNA. However, in petites lacking an ori/rep, disruption of MGM101 leads to either a complete loss or a dramatically decreased stability of mtDNA. This discriminatory effect of MGM101 suggests that replication of rho(+) and ori/rep-devoid rho(-) mtDNAs is carried out by the same process. By contrast, the persistence of ori/rep-containing mtDNA in HS petites lacking MGM101 identifies a distinct replication pathway. The alternative mtDNA replication mechanism provided by ori/rep is independent of mitochondrial RNA polymerase encoded by RPO41 as a HS rho(-) genome is stably maintained in a mgm101, rpo41 double mutant.  相似文献   

14.
The Fr gene in common bean, Phaseolus vulgaris L., is a unique gene for the study of plant nuclear-mitochondrial interactions because it appears to directly influence plant mitochondrial genome structure, resulting in the restoration of pollen fertility in cytoplasmic male sterile plants. This gene action is distinct from other pollen fertility restoration systems characterized to date. As a first step towards the map-based cloning of this unusual nuclear gene, we identified RAPD markers linked to Fr using bulked segregant analysis of near-isogenic lines. Using DNA gel blot hybridization, we localized the identified RAPD markers to a linkage group on the common bean RFLP map and constructed a linkage map of the Fr region using both RAPD markers and RFLP markers. Analysis of the mode of Fr action with the aid of identified Fr-linked DNA markers indicated that Fr functions in a semidominant fashion, showing dosage effect in controlling the dynamics of a heteroplasmic mitochondrial population. We also present our observations on the developmental distinctions, crucial in the accurate mapping of the Fr gene, between spontaneous cytoplasmic reversion and Fr-driven fertility restoration, two phenomena that are phenotypically indistinguishable.  相似文献   

15.
Many flowering plant species exhibit a variety of distinct sexual morphs, the two most common cases being the co-occurrence of females and males (dioecy) or the co-occurrence of hermaphrodites and females (gynodioecy). In this study, we compared DNA sequence variability of the three genomes (nuclear, mitochondrial and chloroplastic) of a gynodioecious species, Silene nutans, with that of a closely related dioecious species, Silene otites. In the light of theoretical models, we expect cytoplasmic diversity to differ between the two species due to the selective dynamics that acts on cytoplasmic genomes in gynodioecious species: under an epidemic scenario, the gynodioecious species is expected to exhibit lower cytoplasmic diversity than the dioecious species, while the opposite is expected in the case of balancing selection maintaining sterility cytoplasms in the gynodioecious species. We found no difference between the species for nuclear gene diversity, but, for the cytoplasmic loci, the gynodioecious S. nutans had more haplotypes, and higher nucleotide diversity, than the dioecious relative, S. otites, even though the latter has a relatively high rate of mitochondrial synonymous substitutions, and therefore presumably a higher mutation rate. Therefore, as the mitochondrial mutation rate cannot account for the higher cytoplasmic diversity found in S. nutans, our findings support the hypothesis that gynodioecy in S. nutans has been maintained by balancing selection rather than by epidemic-like dynamics.  相似文献   

16.
Replication factor C (RF-C), an auxiliary factor for DNA polymerases δ and , is a multiprotein complex consisting of five different polypeptides. It recognizes a primer on a template DNA, binds to a primer terminus, and helps load proliferating cell nuclear antigen onto the DNA template. The RFC2 gene encodes the third-largest subunit of the RF-C complex. To elucidate the role of this subunit in DNA metabolism, we isolated a thermosensitive mutation (rfc2-1) in the RFC2 gene. It was shown that mutant cells having the rfc2-1 mutation exhibit (i) temperature-sensitive cell growth; (ii) defects in the integrity of chromosomal DNA at restrictive temperatures; (iii) progression through cell cycle without definitive terminal morphology and rapid loss of cell viability at restrictive temperatures; (iv) sensitivity to hydroxyurea, methyl methanesulfonate, and UV light; and (v) increased rate of spontaneous mitotic recombination and chromosome loss. These phenotypes of the mutant suggest that the RFC2 gene product is required not only for chromosomal DNA replication but also for a cell cycle checkpoint. It was also shown that the rfc2-1 mutation is synthetically lethal with either the cdc44-1 or rfc5-1 mutation and that the restrictive temperature of rfc2-1 mutant cells can be lowered by combining either with the cdc2-2 or pol2-11 mutation. Finally, it was shown that the temperature-sensitive cell growth phenotype and checkpoint defect of the rfc2-1 mutation can be suppressed by a multicopy plasmid containing the RFC5 gene. These results suggest that the RFC2 gene product interacts with the CDC44/RFC1 and RFC5 gene products in the RF-C complex and with both DNA polymerases δ and during chromosomal DNA replication.  相似文献   

17.
18.
19.
Efficient and inducible recombinase-mediated DNA excision is an optimal technology for automatically deleting unwanted DNA sequences, including selection marker genes. However, this methodology has yet to be established in transgenic silkworms. To achieve efficient and inducible FLP recombinase-mediated DNA excision in transgenic silkworms, one transgenic target strain (TTS) containing an FRT-flanked silkworm cytoplasmic actin 3 gene promoter (A3)-enhanced green fluorescent protein (EGFP) expression cassette, as well as two different types of FLP recombinase expression helper strains were generated. Then, the FLP recombinase was introduced into the TTS silkworms by pre-blastoderm microinjection and sexual hybridization. Successful recombinase-mediated deletion of the A3-EGFP expression cassette was observed in the offspring of the TTS, and the excision efficiencies of the FLP expression vector and FLP mRNA pre-blastoderm microinjection were 2.38 and 13.3 %, respectively. The excision efficiencies resulting from hybridization between the TTS and the helper strain that contained a heat shock protein 70 (Hsp70)-FLP expression cassette ranged from 32.14 to 36.67 % after heat shock treatment, while the excision efficiencies resulting from hybridization between the TTS and the helper strain containing the A3-FLP expression cassette ranged from 97.01 to 100 %. These results demonstrate that the FLP/FRT system can be used to achieve highly efficient and inducible post-integration excision of unwanted DNA sequences in transgenic silkworms in vivo. Our present study will facilitate the development and application of the FLP/FRT system for the functional analysis of unknown genes, and establish the safety of transgenic technologies in the silkworm and other lepidopteran species.  相似文献   

20.
The heavy chain of cytoplasmic dynein is required for nuclear migration in Aspergillus nidulans and other fungi. Here we report on a new gene required for nuclear migration, nudG, which encodes a homologue of the “8-kD” cytoplasmic dynein light chain (CDLC). We demonstrate that the temperature sensitive nudG8 mutation inhibits nuclear migration and growth at restrictive temperature. This mutation also inhibits asexual and sexual sporulation, decreases the intracellular concentration of the nudG CDLC protein and causes the cytoplasmic dynein heavy chain to be absent from the mycelial tip, where it is normally located in wild-type mycelia. Coimmunoprecipitation experiments with antibodies against the cytoplasmic dynein heavy chain (CDHC) and the nudG CDLC demonstrated that some fraction of the cytoplasmic dynein light chain is in a protein complex with the CDHC. Sucrose gradient sedimentation analysis, however, showed that not all of the NUDG protein is complexed with the heavy chain. A double mutant carrying a cytoplasmic dynein heavy chain deletion plus a temperature-sensitive nudG mutation grew no more slowly at restrictive temperature than a strain with only the CDHC deletion. This result demonstrates that the effect of the nudG mutation on nuclear migration and growth is mediated through an interaction with the CDHC rather than with some other molecule (e.g., myosin-V) with which the 8-kD CDLC might theoretically interact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号