首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Summary The induction of gene conversion and mitotic crossing-over by photoaddition of psoralens, 254 nm ultraviolet radiation, and nitrogen mustards was determined in diploid cells homozygous for the pso3-1 mutation and in the corresponding wild type of Saccharomyces cerevisiae. For these different agents, the frequency of non-reciprocal events (conversion) is reduced in the pso3-1 mutant compared to the wild type. In contrast, the frequency of reciprocal events (crossing-over) is increased at a range of doses. These observations, together with the block in induced mutagenesis for both reverse and forward mutations previously reported for the pso3-1 mutant, suggest that the PS03 gene product plays a role in mismatch repair of short patch regions. The block in gene conversion in the pso3 homozygous diploid leads, in the case of nitrogen mustards, to specific repair intermediates which are lethal to the cells.  相似文献   

4.
c-Abl plays important roles in cellular response to DNA damage. However, possible roles for Arg (Abl-related gene) in DNA damage response are unknown. Here, we show that ionizing radiation (IR)-induced Rad51 focus formation is reduced in Arg-deficient cells generated from a chicken B cell line by targeted disruption. This is consistent with the findings that Arg-deficient cells display hypersensitivity to IR, elevated frequencies of IR-induced chromosomal aberrations, and reduced targeted integration frequencies. All of these abnormalities in DNA damage repair are also observed in ATM-deficient cells but not in c-Abl-deficient cells. Finally, we show that Arg interacts with and phosphorylates Rad51 in 293T cells. These results suggest that Arg plays a role in homologous recombinational (HR) DNA repair by phosphorylating Rad51.  相似文献   

5.
6.
7.
Our laboratories have independently identified a gene in Salmonella choleraesuis and Salmonella typhimurium that is necessary for efficient adherence and entry of these organisms into cultured epithelial cells. Introduction of a mutated gene into several Salmonella strains belonging to different serotypes rendered these organisms deficient for adherence and invasion of cultured cells. This effect was most pronounced in the host-adapted serotypes Salmonella gallinarum, S. choleraesuis, and Salmonella typhi. The nucleotide sequence of this gene, which we have termed invH, encodes a predicted 147-amino-acid polypeptide containing a signal sequence. The InvH predicted polypeptide is highly conserved in S. typhimurium and S. choleraesuis, differing at only three residues. The invH gene was expressed in Escherichia coli using a T7 RNA polymerase expression system and a polypeptide of ~16000 molecular weight was observed, in agreement with the predicted size of its gene product. Upon fractionation, the expressed polypeptide was localized in the bacterial membrane fraction. Southern and colony hybridization analyses indicated that the invH gene is present in all Salmonella strains tested (91 strains belonging to 37 serotypes) with the exception of strains of Salmonella arizonae. No homologous sequences were detected in Yersinia, Shigella, Proteus, and several strains of enteroinvasive and enteropathogenic E. coli. Downstream from the S. choleraesuis (but not S. typhimurium) invH gene, a region with extensive homology to the insertion sequence IS3 was detected.  相似文献   

8.
The upr-I gene controlling UV sensitivity in Neurospora crassa has been transferred from a microconidial strain into a macroconidial strain. The properties of the strain with respect to UV sensitivity and photoreactivation (PR) have been modified in the macroconidial background leading to an enhancement of resistance to UV by a factor of about 2 and some suggestion of enzymatic PR. The upr-I gene confers sensitivity to nitrous acid to about the same degree as that for UV. However, inactivation of strains carrying the upr-I gene by white light in the presence of photosensitizing dyes is equivalent to that of strains exhibiting normal sensitivity to UV.  相似文献   

9.
A major gene controlling chlorophyll deficiency (phenotyped by yellow leaf color, yl) in sunflower was identified and mapped in an F(2) population derived from a cross between two breeding lines. Greenness degree was scored by a hand-held chlorophyll meter in the F(2) population. Leaf tissue from the parents, F(1) hybrids, and some F(2) progenies were also sampled to determine the chlorophyll content. All F(1) plants had normal green leaf color and the segregation of the plants in the F(2) population fits the monogenic ratio (chi((3:1))(2)=0.03, p>0.9), indicating that leaf color is a monogenic trait with normal green dominant over yellow leaf color in this population. The contents of chlorophyll a, chlorophyll b, and total chlorophyll in the yellow-leafed lines were reduced by 41.6%, 53.5%, and 44.3%, respectively, in comparison with those in the green-leafed lines. Genetic mapping with molecular markers positioned the gene, yl, to linkage group 10 of sunflower. An SSR marker, ORS 595, cosegregated with yl, and a TRAP marker, B26P17ga5-300, was linked to yl with a genetic distance of 4.2cM. The molecular marker tightly linked to the chlorophyll deficiency gene will provide insight into the process of chlorophyll metabolism in sunflower.  相似文献   

10.
The haploid xs9 mutant, originally selected for on the basis of a slight sensitivity to the lethal effect of X-rays, was found to be extremely sensitive to inactivation by 8-methoxypsoralen (8MOP) photoaddition, especially when cells are treated in the G2 phase of the cell cycle. As the xs9 mutation showed no allelism with any of the 3 known pso mutations, it was now given the name of pso4-1. Regarding inactivation, the pso4-1 mutant is also sensitive to mono- (HN1) or bi-functional (HN2) nitrogen mustards, it is slightly sensitive to 254 nm UV radiation (UV), and shows nearly normal sensitivity to 3-carbethoxypsoralen (3-CPs) photoaddition or methyl methanesulfonate (MMS). Regarding mutagenesis, the pso4-1 mutation completely blocks reverse and forward mutations induced by either 8MOP or 3CPs photoaddition, or by gamma-rays. In the cases of UV, HN1, HN2 or MMS treatments, while reversion induction is still completely abolished, forward mutagenesis is only partially inhibited for UV, HN1, or MMS, and it is unaffected for HN2. Besides severely inhibiting induced mutagenesis, the pso4-1 mutation was found to be semi-dominant, to block sporulation, to abolish the diploid resistance effect, and to block induced mitotic recombination, which indicates that the PSO4 gene is involved in a recombinational pathway of error-prone repair, comparable to the E. coli SOS repair pathway.  相似文献   

11.
K M Hager  C Yanofsky 《Gene》1990,96(2):153-159
Asexual development in Neurospora crassa proceeds through a series of discrete morphological stages that culminate in the production of dormant spores called conidia. Changes in the pattern of gene expression parallel the morphological transformations associated with conidiation. As a prerequisite to the analysis of developmental gene expression in N. crassa, several genes of unknown function that are preferentially expressed during conidiation were isolated [Berlin and Yanofsky, Mol. Cell. Biol. 5 (1985) 849-855]. The molecular structure and nucleotide sequence of one of these genes, designated con-13, is presented. The con-13 gene specifies a relatively rare 1.35-kb message which is first detected about 8 h following the induction of conidiation. Sequence analysis of both cDNA and genomic clones indicates that the con-13 gene consists of three exons divided by two small introns. It encodes a polypeptide of 340 amino acid residues (37.1 kDa). The Con-13 protein is weakly acidic and hydrophilic. A comparison of the regions upstream from the con-8, con-10, and con-13 genes revealed several short sequence motifs which may be important in developmental gene regulation.  相似文献   

12.
13.
14.
15.
D-Arabinose dehydrogenase has been purified to homogeneity from wild-type Neurospora crassa 74-A (FGSC 262) and from two colonial mutants, col-15a (FGSC 1391) and col-16a (FGSC 1349), found to contain more of the enzyme. The enzymes were characterized by measurement of several kinetic and physicochemical parameters. The enzymes were the same in all characteristics studied thus far. Immunological studied performed with enzyme preparations from the three strains showed antigenic identity and indicated that those colonial strains contain more normal enzyme, rather than the usual amount of an altered "improved" enzyme. Quantitation of the enzyme in crude extracts, performed by single radial immunodiffusion, showed that the colonial strains have twice the level of enzyme as the wild-type strain. Genetic characterization, performed by analysis of meiotic products, heterokaryosis, and reversions, indicated that the difference in D-arabinose dehydrogenase activity detected among the three strains is probably determined by one gene. The genetic control, structural or regulatory of this enzyme activity is different from that determining the morphological alterations exhibited by mutant strains carrying the col-15 or col-16 gene.  相似文献   

16.
17.
Twenty of the twenty-two MudII1734 insertions impairing the chrysobactin iron-assimilation system of Erwinia chrysanthemi 3937 were localized to a 50 kbp genomic insert contained in the R-prime plasmid, R'4 (Enard et al., 1988). Using the conjugative plasmid pULB110 (RP4::mini-Mu) and the generalized transducing phage phi EC2, we located this iron-transport region and the two unlinked mutations on the chromosome linkage map. Chrysobactin is a catechol-type siderophore and, as we have previously observed with the entA locus of Escherichia coli, the E. chrysanthemi-derived R'4 was found to complement E. coli entB and entE mutations. A 2.9 kb EcoRi and a 4.8 kb BamHI fragment in the R'4 sharing homology with the E. coli entCEBAP15 operon DNA were subcloned. These fragments were used as DNA/DNA hybridization probes to screen a wild-type gene library, yielding a recombinant cosmid (pEC7) able to complement mutations disrupting the 2,3-dihydroxybenzoic acid biosynthetic pathway in both Erwinia and Escherichia spp. as well as the E. coli entE mutation. Physical mapping of the genomic MudII1734 insertions corresponding to these mutations led to the identification of a cluster of genes confined to a DNA sequence of about 10 kb required for both biosynthetic and receptor functions.  相似文献   

18.
Repair of DNA double-strand break (DSB) is an evolutionary conserved Rad51-mediated mechanism. In yeasts, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57 are mediators of the nucleoprotein RadS1 filament formation. As shown in this work, a novel RAD51Sp-dependent pathway of DSB repair acts in S. pombe parallel to the pathway mediated by Rad51 paralogs. A new gene dds20+ that controls this pathway was identified. The overexpression of dds20+ partially suppresses defects of mutant rhp55delta in DNA repair. Cells of dds20delta manifest hypersensitivity to a variety of genotoxins. Epistatic analysis revealed that dds20+ is a gene of the recombinational repair group. The role of Dds20 in repair of spontaneous damages occurring in the process of replication and mating-type switching remains unclear. The results obtained suggest that Dds20 has functions beyond the mitotic S phase. The Dds20 protein physically interacts with Rhp51 (Rad51Sp). Dds20 is assumed to operate at early recombinational stages and to play a specific role in the Rad51 protein filament assembly differing from that of Rad51 paralogs.  相似文献   

19.
20.
The human MRN complex is a multisubunit nuclease that is composed of Mre11, Rad50, and Nbs1 and is involved in homologous recombination and DNA damage checkpoints. Mutations of the MRN genes cause genetic disorders such as Nijmegen breakage syndrome. Here we identified a Schizosaccharomyces pombe nbs1(+) homologue by screening for mutants with mutations that caused methyl methanesulfonate (MMS) sensitivity and were synthetically lethal with the rad2Delta mutation. Nbs1 physically interacts with the C-terminal half of Rad32, the Schizosaccharomyces pombe Mre11 homologue, in a yeast two-hybrid assay. nbs1 mutants showed sensitivities to gamma-rays, UV, MMS, and hydroxyurea and displayed telomere shortening similar to the characteristics of rad32 and rad50 mutants. nbs1, rad32, and rad50 mutant cells were elongated and exhibited abnormal nuclear morphology. These findings indicate that S. pombe Nbs1 forms a complex with Rad32-Rad50 and is required for homologous recombination repair, telomere length regulation, and the maintenance of chromatin structure. Amino acid sequence features and some characteristics of the DNA repair function suggest that the S. pombe Rad32-Rad50-Nbs1 complex has functional similarity to the corresponding MRN complexes of higher eukaryotes. Therefore, S. pombe Nbs1 will provide an additional model system for studying the molecular function of the MRN complex associated with genetic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号