首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants form their gametes late in somatic development and, as a result, often pass somatic mutations on to their progeny. Classic examples of this process are the germinal revertants of unstable, Ac/Ds transposon-induced kernel mutations in maize: frequent and early reversion events during somatic development are generally correlated with a high frequency of revertant gametes. We have characterized a Ds allele of the maize waxy(wx) gene, wx-m5:CS7, for which the correlation between somatic and germinal reversion frequencies no longer holds. The ability of wx-m5:CS7 (CS7) to produce revertant gametes is suppressed ∼100-fold in comparison with a second Ds allele, wx-m5:CS8 (CS8), which has an identical insertion at Wx and the same frequent and early somatic reversion pattern in endosperm. The excision of Ds from wx is not reduced 100-fold in the somatic tissues of CS7 plants as compared with CS8 plants. Suppressed formation of CS7 revertant gametes is independent of the Ac transposase source and is heritably passed to the embryos of progeny kernels; however, frequent and early somatic reversion is observed again in endosperms of these progeny kernels. This suppression appears to be caused by a dominant mutation in a trans-acting product that can suppress the germinal reversion of other Ds-induced alleles as well; the mutation is tightly linked to Wx but is not in the CS7 Ds itself. Taken together, the data suggest a novel mode of developmental control of Ac/Ds elements by the host plant, suppressing element excision in the shoot meristem. Received: 16 December 1996 / Accepted: 4 March 1997  相似文献   

2.
To assess the potential advantages of a transposon-tagging system based on gametophyte-specific transposition a fusion between the anther-specific Arabidopsis thaliana apg promoter and the maize Ac transposase gene was constructed and introduced into tobacco. The ability of this transposase source to activate Ds transposition in a developmentally controlled manner was monitored by crossing to plants harbouring the cell autonomous excision marker gene construct, Ds —SPT. A number of fully green, streptomycin-resistant seedlings resulting from germinal transposition events were observed in the progeny of apg -TPase x Ds —SPT F1 plants. Streptomycin-resistant sectors were not observed in either F1 seedlings or F2 progeny, indicating a complete lack of somatic excision. Further crosses of apg —TPase sources to plants containing Ds—bar herbicide selection excision marker constructs gave reproducible gametophytic excision frequencies of up to 0.3%. Sequencing of Ds excision sites from F2 seedlings derived from single F1 plants revealed various sequence alterations in the original Ds insertion 'footprint' indicative of independent Ds excision events. Independent re-insertion was confirmed by Southern analysis of F2 siblings. It is concluded that apg -controlled Ac transposase expression activates male gametophyte-specific Ds transposition.  相似文献   

3.
Two kinds of T-DNA constructs, I-RS/dAc-I-RS and Hm(R)Ds, carrying a non-autonomous transposable element of Ac of maize were introduced into rice plants by Agrobacterium-mediated gene transfer. Six transgenic rice plants identified as containing a single copy of the element were crossed with two transgenic rice plants carrying a gene for Ac transposase under the control of the cauliflower mosaic virus 35S promoter. In F2 progenies, excision of the element was detected by PCR analysis and re-integration of the element was investigated by Southern blot analysis. The frequency of the excision of the element was found to vary from 0 to 70% depending on the crossing combination. The frequency of the number of individual transposition events out of the total number of F2 plants with germinal excision was 44% in one crossing combination and 38% in the other. In the most efficient case, 10 plants with independent transposition were obtained out of the 49 F2 plants tested. Linkage analysis of the empty donor site and the transposed Ds-insertion site in F3 plants demonstrated that one of five Ds-insertion sites was not linked to the empty donor site. The transgenic rice obtained in this study can be used for functional genomics of rice.  相似文献   

4.
5.
We studied the products of alternative transposition reactions that utilize reverse-oriented Ds termini as substrates. In this configuration, Ds transposition can generate genome rearrangements including deletions, inversions, and reciprocal translocations. In approximately half of the transposition products recovered in Arabidopsis, the termini of the reversed ends Ds element were ligated together. The sequences at these fused-end junctions suggest that the excised transposon termini form covalently closed hairpin structures. These results shed new light on the mechanism of Ac/Ds transposition.  相似文献   

6.
7.
The feasibility of using transient transposase expression to mobilize Ds elements for gene tagging in Hieracium aurantiacum was evaluated. A T-DNA construct carrying the Ac transposase gene and either a visible marker gene (uidA) or the conditionally-lethal marker gene (codA) was transferred to H. aurantiacum leaf discs (previously transformed with a Ds element) by co-cultivation with Agrobacterium tumefaciens. Shoots were regenerated directly from the co-cultivated leaf discs under selection for antibiotic resistance resulting from Ds excision. Most regenerants carried unique transposition events. Of 84 regenerated plants, twenty one (25%) did not express the marker gene and the DNA coding sequence of the transposase could not be detected in seven (8.3%). Potential advantages of this method over conventional gene-tagging methods are: rapid recovery of individual transposition events; regenerated plants are isogenic; and the transient nature of transposase expression should facilitate the stabilisation of the transposed element.  相似文献   

8.
Summary The nucleotide sequence of the 1494 by wxB4 Ds element is presented. A comparison with previously characterized Ds elements reveals several novel features. This element has less Ac terminal sequence than other Ac-like Ds elements. The left terminus contains 398 by of Ac sequence interrupted by a transposon-like DNA insertion, leaving only 317 by of contiguous Ac sequence. The right terminus has 259 by of Ac terminal sequence. The interior of the element contains sequences not found in other cloned members of the Ac/Ds family. We suggest that the role of this non-Ac DNA is to separate the Ac termini by a minimum distance and may be a cis requirement for Ds transposition in maize.Abbreviations Ac activator - Adh1 alcohol dehydrogenase 1 - Ds dissociation - RFLP restriction fragment length polymorphism - Spm suppressor mutator - Wx waxy  相似文献   

9.
Pattern of ac transposition in maize   总被引:1,自引:1,他引:0       下载免费PDF全文
Schwartz D 《Genetics》1989,121(1):125-128
Analysis of four nearby transpositions of Ac from the waxy locus indicate that the element can reinsert to either side. The cause of the asymmetry observed for P-VV transpositions is discussed and a model is presented to account for the high frequency of close reinsertions of Ac.  相似文献   

10.
Summary Hybridization experiments indicated that the maize genome contains a family of sequences closely related to the Ds1 element originally characterized from theAdh1-Fm335 allele of maize. Examples of these Ds1-related segments were cloned and sequenced. They also had the structural properties of mobile genetic elements, i.e., similar length and internal sequence homology with Ds1, 10- or 11-bp terminal inverted repeats, and characteristic duplications of flanking genomic DNA. All sequences with 11-bp terminal inverted repeats were flanked by 8-bp duplications, but the duplication flanking one sequence with 10-bp inverted repeats was only 6 bp. Similar Ds1-related sequences were cloned fromTripsacum dactyloides. They showed no more divergence from the maize sequences than the individual maize sequences showed when compared with each other. No consensus sequence was evident for the sites at which these sequences had inserted in genomic DNA.  相似文献   

11.
The mechanism of modulator transposition in maize   总被引:8,自引:5,他引:8       下载免费PDF全文
Greenblatt IM 《Genetics》1968,58(4):585-597
  相似文献   

12.
Summary The structure of the unstable Ds-induced sh-m5933 allele of the maize sucrose synthase gene was analysed and a double Ds structure found in opposite orientation on both sides of a 30 kb insert interrupting the sucrose synthase gene. The double Ds structures bordering the insert are identical over a distance of approximately 3 kb. These double Ds structures and the DNA segments beyond them are in opposite orientation and identical over a distance of approx. 5.3 kb. A hypothesis for how such a symmetrical structure could be formed is proposed. When one complete Ds element was excised from one of the double Ds structures a half Ds element was left behind. This half Ds element was found in one revertant strain which displayed an altered pattern of chromosome breakage compared to revertant strains which had not undergone Ds excision. Nine new maize strains which showed a similarly altered chromosome breakage pattern were isolated. In all nine cases we observed an indistinguishable deletion in the genomic DNA. These excisions are likely to be the result of similar excision events to that described above. We conclude that double Ds structures are responsible for Ds-induced chromosome breakage.  相似文献   

13.
Embryo specific (emb) mutants exhibit aberrant embryo development without deleterious effects on endosperm development. We have analyzed five emb mutants of maize, which, based on their developmental profiles can be divided into two groups: mutants arrested at early stages and mutants with novel phenotypes. The members of the first group resemble wild-type proembryos and never reach other developmental stages. In the second group the tube-shaped mutants emb*-8522 and emb*-8535 completely lack apical-basal differentiation, while in mutant emb*-8516 a second embryo-like structure arises from the suspensor. The five emb mutations analyzed are non-allelic and two of the mutations are very likely caused by insertion of the transposon mutator, opening the door for their molecular analysis. Received: 10 February 1999 / Accepted: 7 July 1999  相似文献   

14.
Isolation of the transposable maize controlling elements Ac and Ds   总被引:50,自引:0,他引:50  
N Fedoroff  S Wessler  M Shure 《Cell》1983,35(1):235-242
  相似文献   

15.
16.
Activator/Dissociation (Ac/Ds) transposon mutagenesis is a widely used tool for gene identification; however, several reports on silencing of the Ac/Ds element in starter lines and in stable transposants question the applicability of such an approach in later generations. We have performed a systematic analysis on various aspects of the silencing phenomenon in rice (Oryza sativa ssp. japonica cv. Nipponbare). High somatic and germinal transposition frequencies observed in earlier generations were maintained as late as T4 and T5 generations; thus the propagation of parental lines did not induce transposon silencing. Moreover, the stably transposed Ds element was active even at the F5 generation, since Ac could remobilize the Ds element as indicated by the footprint analysis of several revertants. Expression of the bar gene was monitored from F3 to F6 generations in >1,000 lines. Strikingly, substantial transgene silencing was not observed in any of the generations tested. We analyzed the timing of transposition during rice development and provide evidence that Ds is transposed late after tiller formation. The possibility, that the independent events could be the result of secondary transposition, was ruled out by analyzing potential footprints by reciprocal PCR. Our study validates the Ac/Ds system as a tool for large-scale mutagenesis in rice, since the Ds elements were active in the starter and insertion lines even in the later generations. We propose that harvesting rice seeds using their panicles is an alternative way to increase the number of independent transposants due to post-tillering transposition.  相似文献   

17.
Emelyanov A  Gao Y  Naqvi NI  Parinov S 《Genetics》2006,174(3):1095-1104
Transposons are very valuable tools for genetic manipulation. However, the number of transposable elements that have been suitably adapted for experimental use is insufficient and the spectrum of heterologous hosts in which they have been deployed is restricted. To date, only transposons from animal hosts have been utilized in heterologous animal species and transposons of plant origin have been used in plant genetics. There has been no experimental evidence that any of the known elements could transpose in hosts belonging to both kingdoms. Here we demonstrate that the maize Dissociation (Ds) element is capable of effective Activator (Ac) transposase-mediated transposition in the zebrafish Danio rerio, yielding remarkable germline transmission rates. In addition, mammalian cells were also found to be conducive to Ds transposition. Furthermore, we demonstrate that nuclear localization of Ac transposase is essential for genomic Ds transposition. Our results support the hypothesis that Ac/Ds elements do not rely on host-specific factors for transposition and that host factors involved in their mobility mechanism are widely conserved. Finally, even in vertebrate cells, the Ac/Ds system displays accurate transposition, large-fragment carrying capacity, high transposition frequencies, efficient germline transmission, and reporter gene expression, all of which are advantageous for various genetic applications and animal biotechnology.  相似文献   

18.
The Kn1-2F11 mutation causes protrusions or knots along the lateral veins of the first few leaves of the maize plant. The phenotype is visible when an unlinked gene, presumably Ac, is present in the genome. The mutation is closely linked to a genetically unstable Adh1 mutation that resulted from the insertion of a Ds2 element (Döring et al., 1984; Chen et al., 1986). Using a unique sequence from the Ds2 element as a hybridization probe, a genomic restriction fragment that cosegregated with the knotted phenotype was cloned. It carries the Kn1-2F11 locus by the following criteria. (i) Cosegregation of the fragment is tightly linked to the phenotype. (ii) Somatic and germinal excision produce a fragment which is the expected size of a revertant fragment; progeny containing the revertant size fragment are normal. (iii) The sequences that hybridize to this fragment are significantly altered in the chromosome containing the original knotted mutation, Kn1-O, (iv) The cloned fragment does not hybridize to a chromosome that contains a deletion of Kn1-O.  相似文献   

19.
We have studied the accumulation of peptidyl hydroxyproline in the pericarp of developing maize (Zea mays L., Golden cross Bantam sweet corn) kernels. Although this hydroxyproline accumulates throughout development, it is most soluble and its content per milligram dry weight greatest at midmaturation stages of development. Salt-soluble proteins containing this hydroxyproline from isolated cell walls of developing kernels were fractionated on a CsCl density gradient and on a Chromatofocusing column, resulting in the purification of an hydroxyproline-rich glycoprotein, PC-1. PC-1 is a basic protein of approximately 65 to 70 kilodaltons in molecular weight with an isoelectric point of at least 10.2 and a density of 1.38 to 1.39 in CsCl. Amino acid composition data indicate that it is rich in hydroxyproline, threonine, proline, lysine, and glycine. Its relation to dicot extensin is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号