首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have found that yeast mutants that are defective in mannose outer chain elongation of N-linked glycoproteins show higher cell wall porosity than normal cells, and are hypersensitive to antibiotics with a large molecular weight; such as neomycin and geneticin. Wild-type yeast cells also showed enhanced sensitivity to neomycin in the presence of tunicamycin, an inhibitor of N-glycosylation, suggesting that the extent of N-glycosylation may affect the sensitivity of yeast cells to drugs and that sensitivity to neomycin may be an effective method for screening for yeast mutants defective in N-glycosylation. Pursuing this logic, we isolated neomycin-sensitive yeast mutants and screened them for defects in N-glycosylation. The neomycin-sensitive, N-glycosylation-defective mutants fell into 15 complementation groups including alleles of the previously isolated temperature-sensitive nes mutants nes10, nes17, and nes25. Gene cloning revealed that NES10 was identical to SEC20, which is involved in ER-Golgi protein transport. NES17 was identical to ALG1, which encodes a β-1,4-mannosyltransferase present in the ER. MSN17, a multicopy suppressor of nes17/alg1, was also isolated and found to be an allele of PSA1, which is involved in GDP-mannose synthesis. NES25 was identical to GUK1, which encodes a GMP kinase. Overexpression of MSN17 increased the GDP-mannose level in a wild-type strain by about threefold, and guk1 decreased the GDP-mannose level to one-fourth, suggesting a close relationship between GTP metabolism and mannose outer chain elongation; the link is presumably provided by the process of GDP-mannose transport in the Golgi membranes. Received: 11 March 1997 / Accepted: 15 July 1997  相似文献   

2.
3.
Cell wall mannoproteins are largely responsible for the adhesive properties and immunomodulation ability of the fungal pathogen Candida albicans. The outer chain extension of yeast mannoproteins occurs in the lumen of the Golgi apparatus. GDP-mannose must first be transported from the cytosol into the Golgi lumen, where mannose is transferred to mannans. GDP is hydrolyzed by a GDPase, encoded by GDA1, to GMP, which then exits the Golgi lumen in a coupled, equimolar exchange with cytosolic GDP-mannose. We isolated and disrupted the C. albicans homologue of the Saccharomyces cerevisiae GDA1 gene in order to investigate its role in protein mannosylation and pathogenesis. CaGda1p shares four apyrase conserved regions with other nucleoside diphosphatases. Membranes prepared from the C. albicans disrupted gda1/gda1 strain had a 90% decrease in the ability to hydrolyze GDP compared to wild type. The gda1/gda1 mutants showed a severe defect in O-mannosylation and reduced cell wall phosphate content. Other cell wall-related phenotypes are present, such as elevated chitin levels and increased susceptibility to attack by β-1,3-glucanases. Our results show that the C. albicans organism contains β-mannose at their nonreducing end, differing from S. cerevisiae, which has only α-linked mannose residues in its O-glycans. Mutants lacking both alleles of GDA1 grow at the same rate as the wild type but are partially blocked in hyphal formation in Lee solid medium and during induction in liquid by changes in temperature and pH. However, the mutants still form normal hyphae in the presence of serum and N-acetylglucosamine and do not change their adherence to HeLa cells. Taken together, our data are in agreement with the hypothesis that several pathways regulate the yeast-hypha transition. Gda1/gda1 cells offer a model for discriminating among them.  相似文献   

4.
The hemiascomycetes yeast Yarrowia lipolytica is a dimorphic yeast with alternating yeast and mycelia forms. Bioinformatic analysis revealed the presence of three putative chitinase genes, YlCTS1, YlCTS2, and YlCTS3, in the Y. lipolytica genome. Here, we demonstrated that the protein of YlCTS1 (YlCts1p), which contains an N-terminal secretion signal peptide, a long C-terminal Ser/Thr-rich domain, and a chitin-binding domain, is a homologue to Saccharomyces cerevisiae chitinase 1 (ScCts1p). Deletion of YlCTS1 remarkably reduced extracellular endochitinase activity in the culture supernatant of Y. lipolytica and enhanced cell aggregation, suggesting a role of YlCts1p in cell separation as ScCts1p does in S. cerevisiae. However, loss of YlCts1p function did not affect hyphal formation induced by fetal bovine serum addition. The mass of YlCts1p was dramatically decreased by jack bean α-mannosidase digestion but not by PNGase F treatment, indicating that YlCts1p is modified only by O-mannosylation without N-glycosylation. Moreover, the O-glycan profile of YlCts1p was identical to that of total cell wall mannoproteins, supporting the notion that YlCts1p can be used as a good model for studying O-glycosylation in this dimorphic yeast.  相似文献   

5.
Dolichol phosphate mannose synthase (DPM) catalyzes the reaction between dolichol phosphate (Dol-P) and guanosine diphosphate mannose (GDP-Man) to form dolichol-phosphate-mannose (Dol-P-Man). This molecule acts as mannose donor for N-glycosylation and glycosylphosphatidylinositol (GPI) biosynthesis. The Plasmodium falciparum DPM1 (Pfdpm1) possesses a single predicted transmembrane region near the N-, but not the C-terminus. Here we show that the cloned Pfdpm1 gene failed to complement a Saccharomyces cerevisiae mutant indicating that the parasite gene does not belong to the baker’s yeast group, as was previously assumed. Furthermore, Pfdpm1 was unable to complement a mouse mutant deficient in DPM but efficiently complements the Schizosaccharomyces pombe fission yeast mutant, indicating a difference between fission yeast and mammalian DPM genes. Therefore, we reanalyzed the hydrophobicity scales of all known DPMs and consequently reclassify the DPM clade into six major novel subgroups. Furthermore, we show that Pfdpm1 represents a unique enzyme among these subgroups.  相似文献   

6.
Expression of foreign enzymes in yeast is a traditional genetic engineering approach; however, useful secretory enzymes are not produced in every case. The hyperthermostable α-amylase encoded by the AmyL gene of Bacillus licheniformis was expressed in Saccharomyces cerevisiae; however, it was only weakly produced and was degraded by the proteasome. To determine the cause of low α-amylase production, AmyL was expressed in a panel of yeast mutants harboring knockouts in non-essential genes. Elevated AmyL production was observed in 44 mutants. The knockout genes were classified into six functional categories. Remarkably, all non-essential genes required for N-linked oligosaccharide synthesis and a gene encoding an oligosaccharyl transferase subunit were identified. Immunoblotting demonstrated that differently underglycosylated forms of AmyL were secreted from oligosaccharide synthesis-deficient mutants, while a fully glycosylated form was produced by wild-type yeast, suggesting that N-linked glycosylation of AmyL inhibited its secretion in yeast. Mutational analysis of six potential N-glycosylation sites in AmyL revealed that the N33Q and N309Q mutations remarkably affected AmyL production. To achieve higher AmyL production in yeast, all six N-glycosylation sites of AmyL were mutated. In wild-type yeast, production of the resulting non-glycosylated form of AmyL was threefold higher than that of the glycosylated form.  相似文献   

7.
Cleavage of the O-glycosyl bonds of Saccharomyces cerevisiae cell wall mannoproteins by β-elimination resulted in the release of about 8% of the carbohydrate in the form of mannose and other low molecular weight oligomannosaccharides (mannose to mannopentaose), leaving 92% mannose still covalently linked to the peptide, and suggesting that this alkali-resistant fraction was N-glycosidically linked. At the non-permissive temperature, S. cerevisiae sec mutants accumulated in the cytoplasm mannoproteins with different degrees of O- and N-glycosylation. The glycoproteins of mutant sec 20-1 contained 60% of the carbohydrate linked by N-bonds, the remainder being O-glycosidically linked. Strains sec 19-1 and sec 1-1 contained 80 and 87%, respectively, of the mannose as N-linked carbohydrates. In addition, when the non-permissive conditions were prolonged over 2 h, strain sec 20-1 completed the formation of the O-linked oligosaccharides, suggesting that it is the kinetics of the process that determines the final composition of the mannoproteins. Our results suggest that the glycosylation of yeast cell wall mannoproteins is probably initiated in the lumen of the endoplasmic reticulum where the O-linked oligosaccharides may be completed. Maturation of the N-linked oligosaccharides, on the other hand, probably occurs during transport of the nascent mannoproteins to the cell surface.  相似文献   

8.
A crude membrane preparation from Phaseolus aureus hypocotyls catalyzes the incorporation of mannose from GDP-[14C]mannose into a acid labile glycolipid and a methanol insoluble fraction. Addition of dolichyl monophosphate to the incubation mixture stimulated the formation of both the mannolipid and the methanol insoluble endproduct. Thin-layer chromatography of endogenous lipid and of the stimulated lipid fraction revealed that both compounds run identical. Ficaprenyl monophosphate also stimulates the incorporation of mannose; however, the ficaprenyl monophosphate mannose formed is not identical to the endogenous mannolipid. This suggests that the endogenous acceptor has the properties of an α-saturated polyprenyl monophosphate rather than those of the ficaprenyl phosphate type. The same membrane preparation also incorporates N-acetylglucosamine into an acid labile glyolipid as well as into a polymer fraction. Evidence is presented that the N-acetylglucosamine containing lipid consists of a mixture of dolichyl pyrophosphate N-acetylglucosamine and dolichyl pyrophosphate di-N-acetylchitobiose. It seems likely that the two compounds have a precursor-product relationship. Incubation of dolichyl pyrophosphate di-N-acetylchitobiose together with GDP-mannose gives rise to lipid-bound mannosyl-di-N-acetylchitobiose. Radioactivity from either the [14C]mannolipid or the N-acetyl[14C]glucosamine containing lipid is incorporated into a methanol insoluble product to 3.4 and 6.3%, respectively; it seems, at least in part, to be a glycoprotein.  相似文献   

9.
The human sodium-dependent vitamin C transporters (hSVCT1 and hSVCT2) mediate cellular uptake of ascorbic acid. Both these transporters contain potential sites for N-glycosylation in their extracellular domains (Asn-138, Asn-144 [hSVCT1]; Asn-188, Asn-196 [hSVCT2]), however the role of N-glycosylation in transporter function is unexplored. On the basis of the result that tunicamycin decreased 14C-ascorbic acid uptake in HepG2 cells, we systematically ablated all consensus N-glycosylation sites in hSVCT1 and hSVCT2 to resolve any effects on ascorbic acid uptake, transporter expression and targeting. We show that removal of individual N-glycosylation sites significantly impairs protein expression and consequently ascorbic acid uptake for hSVCT1 mutants (N138Q is retained intracellularly) and for hSVCT2 mutants (all of which reach the cell surface). N-Glycosylation is therefore essential for vitamin C transporter functionality.  相似文献   

10.
Modifications in cell surface glycosylation affecting cell adhesion are common characteristics of transformed cells. This study characterizes the N-glycosylation profile of E-cadherin in models of canine mammary gland adenoma and carcinoma evaluating the importance of these glycosylation modifications in the malignant phenotype.Our results show that the pattern of E-cadherin N-glycosylation in mammary carcinoma is characterized by highly branched N-glycans, increase in sialylation and an expression of few high mannose structures. Detailed mass spectrometry analysis demonstrated a new N-glycosylation site containing a potential complex type N-glycan in E-cadherin from a mammary carcinoma cell line.Our study demonstrates the importance of E-cadherin N-glycans in the process of tumor development and in the transformation to the malignant phenotype.  相似文献   

11.
Corin is a membrane-bound protease essential for activating natriuretic peptides and regulating blood pressure. Human corin has 19 predicted N-glycosylation sites in its extracellular domains. It has been shown that N-glycans are required for corin cell surface expression and zymogen activation. It remains unknown, however, how N-glycans at different sites may regulate corin biosynthesis and processing. In this study, we examined corin mutants, in which each of the 19 predicted N-glycosylation sites was mutated individually. By Western analysis of corin proteins in cell lysate and conditioned medium from transfected HEK293 cells and HL-1 cardiomyocytes, we found that N-glycosylation at Asn-80 inhibited corin shedding in the juxtamembrane domain. Similarly, N-glycosylation at Asn-231 protected corin from autocleavage in the frizzled-1 domain. Moreover, N-glycosylation at Asn-697 in the scavenger receptor domain and at Asn-1022 in the protease domain is important for corin cell surface targeting and zymogen activation. We also found that the location of the N-glycosylation site in the protease domain was not critical. N-Glycosylation at Asn-1022 may be switched to different sites to promote corin zymogen activation. Together, our results show that N-glycans at different sites may play distinct roles in regulating the cell membrane targeting, zymogen activation, and ectodomain shedding of corin.  相似文献   

12.
N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin''s accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed.  相似文献   

13.
Plant pathogenic fungi deploy secreted effectors to suppress plant immunity responses. These effectors operate either in the apoplast or within host cells, so they are putatively glycosylated, but the posttranslational regulation of their activities has not been explored. In this study, the ASPARAGINE-LINKED GLYCOSYLATION3 (ALG3)-mediated N-glycosylation of the effector, Secreted LysM Protein1 (Slp1), was found to be essential for its activity in the rice blast fungus Magnaporthe oryzae. ALG3 encodes an α-1,3-mannosyltransferase for protein N-glycosylation. Deletion of ALG3 resulted in the arrest of secondary infection hyphae and a significant reduction in virulence. We observed that Δalg3 mutants induced massive production of reactive oxygen species in host cells, in a similar manner to Δslp1 mutants, which is a key factor responsible for arresting infection hyphae of the mutants. Slp1 sequesters chitin oligosaccharides to avoid their recognition by the rice (Oryza sativa) chitin elicitor binding protein CEBiP and the induction of innate immune responses, including reactive oxygen species production. We demonstrate that Slp1 has three N-glycosylation sites and that simultaneous Alg3-mediated N-glycosylation of each site is required to maintain protein stability and the chitin binding activity of Slp1, which are essential for its effector function. These results indicate that Alg3-mediated N-glycosylation of Slp1 is required to evade host innate immunity.  相似文献   

14.
Protein O-mannosylation has been postulated to be critical for production and secretion of glycoproteins in fungi. Therefore, understanding the regulation of this process and the influence of heterologous expression of glycoproteins on the activity of enzymes engaged in O-glycosylation are of considerable interest. In this study we expressed cellobiohydrolase II (CBHII) of T. reesei, which is normally highly O-mannosylated, in Saccharomyces cerevisiae pmt mutants partially blocked in O-mannosylation. We found that the lack of Pmt1 or Pmt2 protein O-mannosyltransferase activity limited the glycosylation of CBHII, but it did not affect its secretion. The S. cerevisiae pmt1Δ and pmt2Δ mutants expressing T. reesei cbh2 gene showed a decrease of GDP-mannose level and a very high activity of cis-prenyltransferase compared to untransformed strains. On the other hand, elevation of cis-prenyltransferase activity by overexpression of the S. cerevisiae RER2 gene in these mutants led to an increase of dolichyl phosphate mannose synthase activity, but it did not influence the activity of O-mannosyltransferases. Overexpression of the MPG1 gene increased the level of GDP-mannose and stimulated the activity of mannosyltransferases elongating O-linked sugar chains, leading to partial restoration of CBHII glycosylation.  相似文献   

15.
Secretory proteins in yeast are N- and O-glycosylated while they enter the endoplasmic reticulum. N-glycosylation is initiated by the oligosaccharyl transferase complex and O-mannosylation is initiated by distinct O-mannosyltransferase complexes of the protein mannosyl transferase Pmt1/Pmt2 and Pmt4 families. Using covalently linked cell-wall protein 5 (Ccw5) as a model, we show that the Pmt4 and Pmt1/Pmt2 mannosyltransferases glycosylate different domains of the Ccw5 protein, thereby mannosylating several consecutive serine and threonine residues. In addition, it is shown that O-mannosylation by Pmt4 prevents N-glycosylation by blocking the hydroxy amino acid of the single N-glycosylation site present in Ccw5. These data prove that the O- and N-glycosylation machineries compete for Ccw5; therefore O-mannosylation by Pmt4 precedes N-glycosylation.  相似文献   

16.
N-Glycosylation is important for the function and regulation of ion channels. We examined the role of N-glycosylation of transient receptor potential melastatin (Trpm) 4b, a membrane glycoprotein that regulates calcium influx. Trpm4b was expressed in vivo in all rat tissues examined. In each tissue, Trpm4b had a different molecular mass, between ∼129 and ∼141 kDa, but all reverted to ∼120 kDa following treatment with peptide:N-glycosidase F, consistent with N-glycosylation being the principal form of post-translational modification of Trpm4b in vivo. In six stable isogenic cell lines that express different levels of Trpm4b, two forms were found, high mannose, core-glycosylated and complex, highly glycosylated (HG), with HG-Trpm4b comprising 85% of the total Trpm4b expressed. For both forms, surface expression was directly proportional to the total Trpm4b expressed. Complex N-glycosylation doubled the percentage of Trpm4b at the surface, compared with high mannose N-glycosylation. Mutation of the single N-glycosylation consensus sequence at Asn-988 (Trpm4b-N988Q), located near the pore-forming loop between transmembrane helices 5 and 6, prevented glycosylation, but did not prevent surface expression, impair formation of functional membrane channels, or alter channel conductance. In transfection experiments, the time courses for appearance of HG-Trpm4b and Trpm4b-N988Q on the surface were similar. In experiments with cycloheximide inhibition of protein synthesis, the time course for disappearance of HG-Trpm4b from the surface was much slower than that for Trpm4b-N988Q. We conclude that N-glycosylation is not required for surface expression or channel function, but that complex N-glycosylation plays a crucial role in stabilizing surface expression of Trpm4b.  相似文献   

17.
Saccharomyces cerevisiae wild-type and mutant cells affected in the structure of mannan outer chain were shown to possess in vivo one major dolichol-P-P-bound oligosaccharide. The size, monosaccharide composition, and pattern obtained upon acetolysis and paper chromatography of the oligosaccharide were the same for all strains and for the main corresponding compound isolated from animal tissues. Evidence is presented indicating that the dolichol-P-P derivative occurring in vivo, and containing 2-N-acetylglucosamine, 9-mannose, and 3-glucose residues, is the intermediate involved in yeast protein glycosylation. The transfer of the oligosaccharide to protein was followed in vivo by the excision of the glucose and at the most one mannose residue. Mannoses were then added to the trimmed saccharide moiety. No difference between the first stages (i.e., excision of monosaccharides) of the processing of the protein-bound oligosaccharides by wild-type and mutant cells was found. However, mutants carrying the mnn 1 mutation, which are known to be devoid of terminal α(1–3)-linked mannose residues in the mannan outer chain and inner core, were found not to add such mannose residues to the already glucose-free protein-bound oligosaccharide.  相似文献   

18.
The T helper cell-derived cytokine interleukin-17A (IL-17A) is a variably glycosylated disulfide-linked homodimer of 34–38 kDa. Its polypeptide monomer contains one canonical N-glycosylation site at Asn68, and human recombinant IL-17A was partly N-glycosylated when expressed in human kidney (HEK293) cells as a fusion protein with a melittin signal sequence and an N-terminal hexahistidine tag. Orbitrap mass analyses of the tryptic N-glycopeptide 63–69 indicated that the N-glycosylation was of the GalNAc-terminated type characteristic of cultured kidney cells. The mass spectrum of IL-17A monomer also included peaks shifted by +948 Da from the respective masses of unglycosylated and N-glycosylated polypeptides. These were caused by unpredicted partial O-glycosylation of Thr26 with the mucin-like structure -GalNAc(-NeuNAc)-Gal-NeuNAc. Identical O-glycosylation occurred in commercially sourced recombinant IL-17A also expressed in HEK293 cells but with a different N-terminal sequence. Therefore, the kidney host cell line not only imposed its characteristic pattern of N-glycosylation on recombinant IL-17A but additionally created an O-glycosylation not known to be present in the T cell-derived cytokine. Mammalian host cell lines for recombinant protein expression generally impose their characteristic patterns of N-glycosylation on the product, but this work exemplifies how a host may also unpredictably O-glycosylate a protein that is probably not normally O-glycosylated.  相似文献   

19.
Congenital disorders of glycosylation (CDG) are rare genetic disorders due to impaired glycosylation. The patients with subtypes CDG-Ia and CDG-Ib have mutations in the genes encoding phosphomannomutase 2 (PMM2) and phosphomannose isomerase (MPI or PMI), respectively. PMM2 (mannose 6-phosphate → mannose 1-phosphate) and MPI (mannose 6-phosphate ⇔ fructose 6-phosphate) deficiencies reduce the metabolic flux of mannose 6-phosphate (Man-6-P) into glycosylation, resulting in unoccupied N-glycosylation sites. Both PMM2 and MPI compete for the same substrate, Man-6-P. Daily mannose doses reverse most of the symptoms of MPI-deficient CDG-Ib patients. However, CDG-Ia patients do not benefit from mannose supplementation because >95% Man-6-P is catabolized by MPI. We hypothesized that inhibiting MPI enzymatic activity would provide more Man-6-P for glycosylation and possibly benefit CDG-Ia patients with residual PMM2 activity. Here we show that MLS0315771, a potent MPI inhibitor from the benzoisothiazolone series, diverts Man-6-P toward glycosylation in various cell lines including fibroblasts from CDG-Ia patients and improves N-glycosylation. Finally, we show that MLS0315771 increases mannose metabolic flux toward glycosylation in zebrafish embryos.  相似文献   

20.
Within the first external loop of mouse and human TRESK subunits one or two N-glycosylation consensus sites were identified, respectively. Using site directed mutagenesis and Western immunoblotting a single residue of both orthologues was found to be glycosylated upon heterologous expression. Two-electrode voltage-clamp recordings from Xenopus oocytes revealed that current amplitudes of N-glycosylation mutants were reduced by 80% as compared to wildtype TRESK. To investigate membrane targeting, GFP-tagged TRESK subunits were expressed in Xenopus oocytes and fluorescence intensity at the cell surface was measured by confocal microscopy. Signals of the N-glycosylation mutants were reduced by >50%, indicating that their lower current amplitudes substantially result from inadequate surface expression of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号