首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the possible translational regulatory roles played by the interferon-induced, double-stranded-RNA-activated protein kinase (P68) and its natural substrate, eucaryotic initiation factor 2 (eIF-2), in poliovirus-infected cells. We demonstrated that protein kinase P68 was both highly autophosphorylated and activated during poliovirus infection. In accordance with these results, immunoprecipitation analysis revealed that phosphorylation of the endogenous eIF-2 alpha subunit also increased in poliovirus-infected cells. We found that double-stranded RNA synthesized during infection likely induced the high levels of P68 autophosphorylation. To determine whether the increase in kinase activity also could be attributed to induction of P68 synthesis, physical levels of protein kinase were measured. It was unexpectedly found that P68 protein levels did not increase but rather dramatically declined in poliovirus-infected cells. Pulse-chase experiments confirmed that the protein kinase was significantly degraded during virus infection. We corroborated our in vivo observations by developing an in vitro assay for P68 degradation using cell extracts. The possible consequences of P68 degradation and increased eIF-2 alpha phosphorylation for protein synthesis regulation in poliovirus-infected cells are discussed.  相似文献   

2.
A number of eucaryotic viruses have devised strategies to minimize the deleterious effects on protein synthesis caused by activation of the interferon-induced, double-stranded-RNA-activated protein kinase, P68. In a recent report, we described the down regulation of the P68 protein kinase in cells infected by human immunodeficiency virus type 1 (HIV-1) (S. Roy, M. G. Katze, N. T. Parkin, I. Edery, A. G. Hovanessian, and N. Sonenberg, Science 247:1216-1219, (1990). We now present evidence that such a decrease in amounts of P68 could be essential for HIV-1 replication because of the presence of the Tat-responsive sequence (TAR sequence) present in the 5' untranslated region of HIV-1 mRNAs, which activates the P68 kinase. We found that poly(A)+ mRNAs prepared from HIV-1-infected cells efficiently activated the protein kinase as did mRNAs from stably transformed cell lines constitutively expressing the TAR region. Furthermore, we found that TAR-containing RNAs complexed with purified P68 protein kinase in vitro by two independent assays and could be cross-linked to P68 kinase present in a HeLa cell extract. Experiments using in vitro-synthesized wild-type and mutant TAR RNAs revealed that both the efficient binding to and the activation of P68 kinase were dependent on the TAR RNA stem structure. The TAR-P68 complex could be competed out by a synthetic RNA that bound to and activated the protein kinase but not by a synthetic RNA that bound with low affinity and did not activate P68. The possible biological consequences of a P68-TAR interaction that may include the switch from latent to active virus replication are discussed.  相似文献   

3.
We have investigated the interaction of VAI RNA with the interferon-induced, double-stranded (ds) RNA-activated protein kinase, P68, both of which regulate protein synthesis in adenovirus-infected cells. Previous work has shown that during infection by the VAI RNA-negative mutant, dl331, both viral and cellular protein synthesis are inhibited due to phosphorylation of the alpha-subunit of the eukaryotic initiation factor, eIF-2, by the P68 protein kinase. Utilizing monoclonal antibodies specific for P68, we demonstrated that the physical levels of P68 in dl331-infected, wild-type Ad2-infected and uninfected cells were all comparable suggesting that the elevated kinase activity detected during mutant infection was not due to increased P68 synthesis. To examine the basis of the increased activity of P68, the protein kinase was purified from infected-cell extracts using the monoclonal antibody. We found that P68 was heavily autophosphorylated during dl331 infection but not during wild-type or mock infection. The extent of autophosphorylation correlated with elevated P68 activity and the loss of the dsRNA requirements to phosphorylate the exogenous substrates, eIF-1 alpha and histones. We also analyzed VAI RNA function in vitro and present evidence that purified VAI RNA can block the autophosphorylation of P68 in the ribosomal salt wash fraction of interferon-treated cells. Finally we suggest VAI RNA functions through a direct interaction with the P68 protein kinase, since we demonstrated that VAI RNA forms a complex with P68 both in vitro and in vivo.  相似文献   

4.
5.
The first step in poliovirus (PV) RNA synthesis is the covalent linkage of UMP to the terminal protein VPg. This reaction can be studied in vitro with two different assays. The simpler assay is based on a poly(A) template and requires synthetic VPg, purified RNA polymerase 3D(pol), UTP, and a divalent cation. The other assay uses specific viral sequences [cre(2C)] as a template for VPg uridylylation and requires the addition of proteinase 3CD(pro). Using one or both of these assays, we analyzed the VPg specificities and metal requirements of the uridylylation reactions. We determined the effects of single and double amino acid substitutions in VPg on the abilities of the peptides to serve as substrates for 3D(pol). Mutations in VPg, which interfered with uridylylation in vitro, were found to abolish viral growth. A chimeric PV containing the VPg of human rhinovirus 14 (HRV14) was viable, but substitutions of HRV2 and HRV89 VPgs for PV VPg were lethal. Of the three rhinoviral VPgs tested, only the HRV14 peptide was found to function as a substrate for PV1(M) 3D(pol) in vitro. We also examined the metal specificity of the VPg uridylylation reaction on a poly(A) template. Our results show a strong preference of the RNA polymerase for Mn(2+) as a cofactor compared to Mg(2+) or other divalent cations.  相似文献   

6.
Infection of HeLa cells by poliovirus results in proteolysis of the large subunit (P220) of the cap-binding protein complex. This is believed to cause the rapid shut-off of host protein synthesis during poliovirus infection. In this communication we examined the possible involvement of poliovirus proteins 3C (a proteinase) and 2C in cleavage of P220. Using antisera against these two viral polypeptides, we were unable to inhibit proteolysis of P220 in an in vitro assay. These results indicate that viral proteins 3C and 2C are not directly involved in cleaving P220 and hence do not cause shut-off of cellular protein synthesis.  相似文献   

7.
R J Grand  M L Grant 《FEBS letters》1989,253(1-2):281-286
Variations in susceptibility to proteolysis by trypsin and chymotrypsin have been used as indicators of conformational changes taking place in N-ras p21 in response to ligand binding. It has been observed that changes occur in undenatured protein, rendering it more resistant to degradation, in the presence of divalent cations such as Mg2+ and Ca2+ (suggesting direct binding of metals to the polypeptide) and even more markedly in the presence of GDP and/or Mg2+ GDP. Monovalent cations (Na+ or K+) cannot substitute for Mg2+ or Ca2+. Some capacity to bind guanine nucleotide is also retained by p21 treated with 7 M urea, as evidenced by increased resistance to proteolytic degradation, but the ability to bind divalent cations is irreversibly lost following denaturation. Protein prepared under denaturing conditions from a eukaryotic source, however, never regains the resistance to proteolysis shown by the bacterial p21 indicating irreversible changes in secondary and tertiary structure produced under these conditions.  相似文献   

8.
9.
Yang L  Lin C  Liu ZR 《Cellular signalling》2005,17(12):1495-1504
P68 nuclear RNA helicase is essential for normal cell growth. The protein plays a very important role in cell development and proliferation. However, the molecular mechanism by which the p68 functions in cell developmental program is not clear. We previously observed that bacterially expressed his-p68 was phosphorylated at multiple sites including serine/threonine and tyrosine [L. Yang, Z.R. Liu, Protein Expr. Purif., 35: 327]. Here we report that p68 RNA helicase is phosphorylated at tyrosine residue(s) in HeLa cells. Phosphorylation of p68 at threonine or tyrosine residues responds differently to tumor necrosis factor alpha (TNF-alpha)induced cell signal. Kinase inhibition and in vitro kinase assays demonstrate that p68 RNA helicase is a cellular target of p38 MAP kinase. Phosphorylation of p68 affects the ATPase and RNA unwinding activities of the protein. In addition, we demonstrate here that phosphorylation of p68 RNA helicase controls the function of the protein in the pre-mRNA splicing process. Interestingly, phosphorylation at different amino acid residues exhibits different regulatory effects. The data suggest that function(s) of p68 RNA helicase may be subjected to the regulation of multiple cell signal pathways.  相似文献   

10.
《Seminars in Virology》1993,4(4):259-268
A number of eukaryotic viruses have devised strategies to down-regulate activity of the interferon induced, double-stranded RNA activated protein kinase, referred to as p68. This control is essential to prevent decreases in protein synthetic rates and possibly to avoid the antiviral effects of interferon. In this review, I will describe primarily the progress made in understanding how influenza virus and poliovirus take advantage of cellular gene products to repress p68 kinase activity. In addition, studies on the inactivation of p68 by viral protein products in the reovirus and vaccinia virus systems will be discussed as will recent structure-function studies aimed at elucidating the molecular mechanisms of kinase activation and repression.  相似文献   

11.
12.
Cotyledons of dry buckwheat (Fagopyrum esculentum Moench) seeds were used to study the cellular localization of a metalloproteinase which performs in vitro the initial limited proteolysis of the main storage protein of the seed, and of its proteinaceous inhibitor. Fractions of complex protein bodies (PB 1) and of the cytoplasm and membrane material (CMM) were obtained by fractionating cotyledons in a mixture of acetone and CCl4. The greater part of the metalloproteinase activity was found to be localized in the PB 1 fraction, with a lesser amount in the CMM fraction, whereas the metalloproteinase inhibitor was localized almost entirely in the PB 1 fraction. The data obtained indicate that the complex protein bodies of dry buckwheat seeds contain the components of the proteolytic system responsible for the initial degradation of the main storage protein — the 13S globulin — of buckwheat seeds, i.e. 13S globulin, the metalloproteinase, and its inhibitor. This confirms that it is possibile for the metalloproteinase to perform a controlled proteolysis of the 13S globulin in vivo. The effect of divalent cations on the degradation of the 13S globulin was also studied. A mechanism is discussed whereby the proteolysis of 13S globulin is initiated by divalent cations released as a result of phytin decationization during seedling growth.Abbreviations CMM cytoplasm and membrane material - PAGE polyacrylamide gel electrophoresis - PB 1 complex protein bodies with globoids  相似文献   

13.
Autophosphorylation of the protein kinase dependent on double-stranded RNA   总被引:45,自引:0,他引:45  
The double-stranded RNA (dsRNA)-dependent protein kinase (p68 kinase) from interferon-treated human cell is a Mr 68,000 protein induced by interferon. By the use of a specific monoclonal antibody, we have been able to study the two distinct protein kinase activities characteristic of purified p68 kinase. The first activity is functional for endogenous phosphorylation of the enzyme (p68 kinase), whereas the second one is responsible for the phosphorylation of exogenous substrates such as eukaryotic initiation factor 2 and histone. When activated by dsRNA in the presence of Mn2+ and ATP, p68 kinase is autophosphorylated and is then capable of catalyzing phosphorylation of histone in the absence of dsRNA. Whereas binding of 8-azido-[alpha-32P] ATP (8-N3ATP) to p68 kinase is dependent on both dsRNA and Mn2+, phosphorylated p68 kinase binds 8-N3ATP independent of dsRNA. This is consistent with a dsRNA requirement for the autophosphorylation of p68 kinase, but not for the phosphorylation of exogenous substrates. p68 kinase is mainly associated with the ribosomal pellet. It could be recovered efficiently by a buffer containing both high salt and a nonionic detergent. Synthesis of p68 kinase is induced several-fold by interferon in different types of human cells. Partial proteolysis of [35S]methionine and an 8-N3ATP-labeled p68 kinase preparation by Staphylococcus aureus V8 protease indicated the presence of a major Mr 48,000 polypeptide (p48) with a specific ATP-binding site. p48 probably contains the catalytic unit of p68 kinase and is analogous to a similar protein which we have previously described as a distinct protein present in a complexed form with p68 kinase. We now believe that the presence of p48 in previously purified kinase preparations was due to partial degradation of p68 kinase.  相似文献   

14.
Coxsackievirus B3 (CVB3) is one of the most common pathogens for viral myocarditis. The lack of effective therapeutics for CVB3-caused viral diseases underscores the importance of searching for antiviral compounds. Pyrrolidine dithiocarbamate (PDTC) is an antioxidant and is recently reported to inhibit ubiquitin-proteasome-mediated proteolysis. Previous studies have shown that PDTC inhibits replication of rhinovirus, influenza virus, and poliovirus. In the present study, we report that PDTC is a potent inhibitor of CVB3. Coxsackievirus-infected HeLa cells treated with PDTC showed a significant reduction of CVB3 viral RNA synthesis, viral protein VP1 expression, and viral progeny release. Similar to previous observation that divalent ions mediate the function of PDTC, we further report that serum-containing copper and zinc are required for its antiviral activity. CVB3 infection resulted in massive generation of reactive oxygen species (ROS). Although PDTC alleviated ROS generation, the antiviral activity was unlikely dependent on its antioxidant effect because the potent antioxidant, N-acetyl-L-cysteine, failed to inhibit CVB3 replication. Consistent with previous reports that PDTC inhibits ubiquitin-proteasome-mediated protein degradation, we found that PDTC treatment led to the accumulation of several short-lived proteins in infected cells. We further provide evidence that the inhibitory effect of PDTC on protein degradation was not due to inhibition of proteasome activity but likely modulation of ubiquitination. Together with our previous findings that proteasome inhibition reduces CVB3 replication (H. Luo, J. Zhang, C. Cheung, A. Suarez, B. M. McManus, and D. Yang, Am. J. Pathol. 163:381-385, 2003), results in this study suggest a strong antiviral effect of PDTC on coxsackievirus, likely through inhibition of the ubiquitin-proteasome pathway.  相似文献   

15.
The cellular protein, poly(rC) binding protein 2 (PCBP2), is known to function in picornavirus cap-independent translation. We have further examined the RNA binding properties and protein-protein interactions of PCBP2 necessary for translation. We have studied its putative multimerization properties utilizing the yeast two-hybrid assay and in vitro biochemical methods, including glutathione S-transferase (GST) pull-down assays and gel filtration. Through genetic analysis, the multimerization domain has been localized to the second K-homologous (KH) RNA binding domain of the protein between amino acids 125 and 158. To examine the function of multimerization in poliovirus translation, we utilized the truncated protein, DeltaKH1-PCBP2, which is capable of multimer formation, but does not bind poliovirus stem-loop IV RNA (an interaction required for translation). Utilizing RNA binding and in vitro translation assays, this protein was shown to act as a dominant negative, suggesting that PCBP2 multimerization functions in poliovirus translation and RNA binding. Additionally, PCBP2 containing a deletion in the multimerization domain (DeltaKH2-PCBP2) was not able to bind poliovirus stem-loop IV RNA and could not rescue translation in extracts that were depleted of endogenous PCBP2. Results from these experiments suggest that the multimerization of PCBP2 is required for efficient RNA binding and cap-independent translation of poliovirus RNA. By examining the functional interactions of the cellular protein PCBP2, we have discovered a novel determinant in the mechanism of picornavirus cap-independent translation.  相似文献   

16.
The inhibitory influence of divalent cations on the ability of bovine alpha-thrombin to hydrolyze prothrombin showed the trend Mn2+ much greater than Ca2+ greater than or equal to Mg2+ greater than Sr2+ much greater than Ba2+. This effect was not due to an inhibition of thrombin's catalytic activity as measured by hydrolysis of a specific synthetic substrate, H-D-Phe-pipecolyl-Arg-p-nitroanilide (D-PhePipArgNA). The presence of divalent cations did not inhibit thrombic proteolysis of gamma-carboxyglutamic acid (Gla)-domainless prothrombin. Prothrombin and Gla-domainless prothrombin were used as competitive inhibitors in the thrombic hydrolysis of D-PhePipArgNA. The apparent Ki value calculated for prothrombin was 18 microM. When either Ca2+ or Mn2+ were present, there was no inhibition. The apparent Ki value determined for Gla-domainless prothrombin was 28 microM in either the absence or presence of Ca2+. Addition of divalent cations to prothrombin, but not to Gla-domainless prothrombin, resulted in an altered protein conformation as measured by high-performance size-exclusion chromatography and ultraviolet difference spectroscopy. These results suggest that a conformational change secondary to the interaction of divalent cations with the Gla-containing domain of prothrombin is required for cation-dependent inhibition of thrombin hydrolysis.  相似文献   

17.
Recent studies have demonstrated that genomes of poliovirus with deletions in the P1 (capsid) region contain the necessary viral information for RNA replication. To test the effects of the substitution of foreign genes on RNA replication and protein expression, chimeric human immunodeficiency virus type 1 (HIV-1)-poliovirus genomes were constructed in which regions of the gag, pol, or env gene of HIV-1 were substituted for regions of the P1 gene in the infectious cDNA clone of type 1 Mahoney poliovirus. The HIV-1 genes were inserted between nucleotides 1174 and 2956 of the poliovirus cDNA so that the translational reading frame was maintained between the HIV-1 genes and the remaining poliovirus genes. The chimeric genomes were positioned downstream from a T7 RNA polymerase promoter and transcribed in vitro by using T7 RNA polymerase, and the RNA was transfected into HeLa cells. A Northern (RNA blot) analysis of the RNA from transfected cells demonstrated the appropriate-size RNA, corresponding to the full-length chimeric genomes, which increased over time. Immunoprecipitation with antibodies specific for poliovirus RNA polymerase or sera from AIDS patients demonstrated the expression of the poliovirus RNA polymerase and HIV-1 proteins as fusions with the poliovirus P1 protein. The expression of the HIV-1-poliovirus P1 fusion protein was dependent upon an intact RNA polymerase gene, indicating that RNA replication was required for efficient expression. A pulse-chase analysis of the protein expression from the chimeric genomes demonstrated the initial rapid proteolytic processing of the polyprotein from the chimeric genomes to give HIV-1-poliovirus P1 fusion protein in transfected cells; the HIV-1 gag-P1 and HIV-1 pol-P1 fusion proteins exhibited a greater intracellular stability than the HIV-1 env-P1 fusion protein. Finally, superinfection with wild-type poliovirus of HeLa cells which had been transfected with the chimeric genomes did not significantly affect the expression of chimeric fusion protein. The results are discussed in the context of poliovirus RNA replication and demonstrate the feasibility of using poliovirus genomes (minireplicons) as novel vectors for expression of foreign proteins.  相似文献   

18.
A synthetic nonapeptide corresponding to the N-terminal sequence of poliovirus genome-linked protein (VPg) was linked to bovine serum albumin and used to raise antibodies in rabbits. The antipeptide antibodies specifically precipitated the nonapeptide, native VPg, and VPg-linked poliovirion RNA. The antipeptide antibodies inhibited host factor-stimulated, poliovirus replicase-catalyzed in vitro synthesis of full-length (35S) RNA in response to virion RNA. Oligouridylic acid-stimulated RNA synthesis was not affected by the antipeptide antibodies. Preincubation of the antibodies with excess nonapeptide reversed the antipeptide antibody-mediated inhibition of host factor-stimulated RNA synthesis by the poliovirus replicase. A role for VPg in the in vitro replication of poliovirus RNA genome is discussed.  相似文献   

19.
Self-catalyzed linkage of poliovirus terminal protein VPg to poliovirus RNA   总被引:19,自引:0,他引:19  
G J Tobin  D C Young  J B Flanegan 《Cell》1989,59(3):511-519
The poliovirus terminal protein, VPg, was covalently linked to poliovirus RNA in a reaction that required synthetic VPg, Mg2+, and a replication intermediate synthesized in vitro. The VPg linkage reaction did not require the viral polymerase, host factor, or ribonucleoside triphosphates and was specific for template-linked minus-strand RNA synthesized on poliovirion RNA. The covalent nature of the bond between VPg and the RNA was demonstrated by the isolation of VPg-pUp from VPg-linked RNA. A model is proposed in which the tyrosine residue in VPg forms a phosphodiester bond with the 5'UMP in minus-strand RNA in a self-catalyzed transesterification reaction. It appears that either the RNA, VPg, or a combination of both forms the catalytic center for this reaction.  相似文献   

20.
C D Morrow  G F Gibbons  A Dasgupta 《Cell》1985,40(4):913-921
The HeLa cell protein (host factor) required for in vitro replication of poliovirus has been identified as a 67,000 dalton phosphoprotein. The purified protein displays three activities in vitro: stimulation of poliovirus RNA synthesis in the presence of poliovirus replicase, apparent self-phosphorylation, and phosphorylation of the alpha-subunit of eukaryotic protein synthesis initiation factor 2 (eIF-2). All three activities can be removed or inhibited by an antibody to host factor. Partially purified preparations of reticulocyte eIF-2 contain a similar phosphoprotein and display host factor activity in the viral RNA synthesis assay in vitro. In vitro phosphorylation of the 67 kd protein can be stimulated by low concentrations of double-stranded RNA. Addition of phosphorylated host factor in an in vitro RNA synthesis assay significantly changes the kinetics of viral RNA synthesis, indicating that protein phosphorylation may play an important role in viral RNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号