首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Assimilate Distribution in Poa annua L.   总被引:1,自引:0,他引:1  
The carbon economy of a flowering tiller of Poa annua L. hasbeen examined over the period from inflorescence emergence tograin shedding. The total import of 14C by the inflorescencereached a maximum at late grain filling but the relative importof assimilate was greatest 14 days after its appearance andrepresented 20–25 per cent of that assimilated by theinflorescence itself. The inflorescence continued to be an importantassimilatory organ after grain ripening when it exported morethan 50 per cent of its assimilate to the stem, roots and othertillers. The patterns of distribution of assimilates from the youngestuppermost and the oldest green leaf of the reproductive tillerwere largely determined by the stage of development of the inflorescence.The youngest leaf mainly supported the inflorescence up to theend of the grain-filling stage but then supplied assimilatesbasally to the roots and adjacent tillers. The oldest greenleaf supported the growth of the stem and the inflorescenceup to anthesis but after this supplied assimilates mainly tothe roots and tillers. Removal of grains or the entire inflorescence only 1 h beforesupplying 14CO2 greatly reduced the rate of fixation of 14CO2and the export of radiocarbon, as well as changing the patternof distribution of assimilates within the plant. The significanceof these results is discussed and comparisons made with cerealsand perennial grasses.  相似文献   

2.
Much of the work on the distribution of 14C-labelled assimilatesin tomato has been done in winter under low light intensities,and consequently the reported distribution patterns of 14C maynot be representative of plants growing in high light. Further,there are several somewhat conflicting reports on patterns ofdistribution of 14C-assimilates in young tomato plants. We soughtto clarify the situation by studying the distribution of 14C-assimilatesin tomato plants of various ages grown in summer when the lightintensity was high. In addition, the role of the stem as a storageorgan for carbon was assessed by (a) identifying the chemicalfractions in the stem internode below a fed leaf and monitoring14 C activity in these fractions over a period of 49 d, and(b) measuring concentrations of unlabelled carbohydrates inthe stem over the life of the plant. The patterns of distribution of 14C-assimilates we found fortomato grown under high light intensity confirmed some of thosedescribed for plants grown under low light, but export of 14Cby fed leaves was generally higher than reported for much ofthe earlier work. Lower leaves of young plants exported over50% of the 14C they fixed, although export fell sharply as theplants aged. Initially, the roots and apical tuft were strongsinks for assimilates, but they had declined in importance bythe time plants reached the nine-leaf stage. On the other hand,the stem became progressively more important as a sink for 14C-assimilates.Older, lower leaves exported more of their 14C-assimilates tothe upper part of the plant than to the roots, whereas youngleaves near the top of the plant exported more of their assimilatesto the roots. The stem internode immediately below a fed leafhad about twice the 14C activity of the internode above theleaf. Mature leaves above and below a fed leaf rarely importedmuch 14C, even when in the correct phyllotactic relationshipto the fed leaf. In the first 3 d after feeding leaf 5 of nine-leaf plants, theorganic and amino acid pools and the neutral fraction of theinternode below the fed leaf had most of the 14C activity, butby 49 d after feeding, the ethanolic-insoluble, starch and lipidfractions had most of the 14C activity. Glucose, fructose andsucrose were the main sugars in the stem. Although concentrationsof these sugars and starch declined in the stem as the plantsmatured, there was little evidence to indicate their use infruit production. Stems of plants defoliated at the 44-leafstage had lower concentrations of sugars and starch at maturity,and produced less fruit than the controls. It was concludedthat tomato is sink rather than source limited with respectto carbon assimilates, and that the storage of carbon in thestem for a long period is possibly a residual perennial traitin tomato.Copyright 1994, 1999 Academic Press Lycopersicon esculentum, tomato, assimilate distribution, 14C, internode storage, sink-source relationships, starch, stem reserves, sugars  相似文献   

3.
The uptake of 14CO2 by developing barley leaves of three ageswas followed using short presentation periods at the beginningor the end of the photoperiod. Partition of labelled carboninto ethanol-soluble and insoluble compounds, and movement oflabel within the plant were also examined. Young expanding leaves (day 6) retained most of the assimilatedcarbon and within 24 h 75–80 per cent of this was in ethanol-insolublecompounds. Leaves that were fully expanded took up rather more14CO2 but exported a substantial amount of this to roots, leafbases including the stem apex, and to the developing secondleaf. Export occurred over periods up to 24 h, and by that time8- and 10-day-old leaves retained only 35 per cent and 15 percent respectively of the total label taken up. The label retainedin these leaves was predominantly in ethanol-soluble forms,whereas 75 per cent or more of the labelled carbon which wasexported from the leaves was found in ethanol-insoluble compounds.  相似文献   

4.
The effects of three ranges of CO2 concentration on growth,carbon distribution and loss of carbon from the roots of maizegrown for 14 d and 28 d with shoots in constant specific activity14CO2 are described. Increasing concentrations of CO2 led toenhancement of plant growth with the relative growth rate (RGR)of the roots affected more than the RGR of the shoots. Between16% and 21% of total net fixed carbon (defined as 14C retainedin the plant plus 14C lost from the root) was lost from theroots at all CO2 concentrations at all times but the amountsof carbon lost per unit weight of plant decreased with time.Possible mechanisms to account for these observations are discussed. Key words: Growth, Roots, Carbon loss, [CO2]  相似文献   

5.
Plants of the biennial Arctium tomentosum were grown from seedto seed-set in an open field under three different treatments:control plants receiving full light intensity, plants with aleaf area reduced by 45 per cent, and shaded plants receivingonly 20 per cent of natural illumination. At various stagesof development the youngest fully expanded leaf of one plantin each treatment was exposed to 14CO2 for half an hour. Subsequentdistribution of labelled assimilates in various plant partswas determined after eight hours. In the first year, the mostdominant sink was the tap root irrespective of variation inassimilate supply. During the production of new vegetative growthin the second season, a larger amount of radioactive photosynthatewas recovered from above ground parts, especially during formationof lateral branches. Seed filling consumed 80–90 per centof labelled carbon exported from the exposed leaf. In the secondyear, the most pronounced difference between treatments wasin the degree of apical dominance, being highest in shaded plantsand lowest in the plants with cut leaves. Results from 14C experimentsagreed fairly well with a ‘partitioning coefficient’derived from a growth analysis of plants grown independentlyunder the same experimental conditions. Reasons for discrepanciesbetween the 14C results and the partitioning coefficient arediscussed. Arctium tomentosum, burdock, variation in assimilate supply, assimilate distribution, 14CO2, labelling, growth analysis  相似文献   

6.
The amounts of carbon released into soil from roots of wheatand barley seedlings grown under three environmental conditionsfor 3 weeks with shoots in constant specific activity 14CO2are reported. This carbon loss was measured as respired 14CO2from both the root and the accompanying microbial populationand as root derived 14C-labelled organic C compounds in thesoil. With a 16 h photoperiod, growth at 15 ?C constant or 18?C day/14 ?C night gave a loss of 33–40% of the totalnet fixed carbon (defined as 14C retained in the plant plus14C lost from the root). The proportion of 14C translocatedto the roots that was released into the soil did not changewith temperature, so carbon distribution within the plant musthave changed. With a 12 h photoperiod and a temperature regimeof 18 ?C/14 ?C carbon loss from the roots was decreased to 17–25%of the total fixed carbon. Key words: Cereals, Roots, Carbon loss  相似文献   

7.
Experiments are described which examine the flux of photosyntheticassimilates from leaves to nodules of soyabean during N2 fixation.The first part, where the respiratory efflux of 14CO2 by noduleswas used as a means of assessing the import of labelled photosynthatefrom leaves, shows that most 14CO2 loss from nodulated rootsis due to the metabolic activity of nodules. Much less photosynthatewas imported by nodules if the metabolic activity associatedwith N2 fixation was inhibited by low O2 concentration. The second part describes the chemical fate of current photosynthateas it is utilized by nodules. Labelled material was detectedin nodules within c.15 min of supplying 14CO2 to the leaf. Thisrose to a maximum at c.70 min before declining by 85% withinthe following 4 h. Most (80%) 14carbon imported by nodules waseither lost as respiratory 14CO2 or re-exported as productsof N2 fixation. Ten per cent of imported carbon was found asstructural material and 10% as starch. Of the 14C soluble in ethanol, most was found in the neutralfraction (80% declining to 50% as sucrose) with smaller amountsas amino acids, organic acids (each category rising from 10%to 20%) and phosphate esters (<5%). Comparison of the distribution of 14C among amino acids, amidesand ureides in the nodules with that of xylem exudates indicatedthat selected compounds were exported from nodules. The 14Cdata indicate that c.80% of the nitrogen exported from noduleswas in the form of ureides (mainly allantoic acid) and only10–12% as amides. Key words: Nodules, 14C-photosynthate, Respiration, Carbon flux  相似文献   

8.
The distribution of photosynthate labelled with 14C was studiedin spring wheat grown with different amounts of nitrogen fertilizerin the three years 1972–4, after exposing the flag leafor the leaf below the flag leaf to 14CO2 at 6–10 or 19–26days after anthesis. The movement of 14C to ears was unaffectedby nitrogen fertilizer except after early exposure in 1973,when nitrogen increased the retention of 14C in stems at maturity The concentration of sugar in the top part of the shoot at theend of the day was unaffected by nitrogen in 1973, but at 22days after anthesis in 1974 the concentration of sucrose inthe glumes and rachis, and in the flag leaf lamina was increasedby nitrogen. Loss of sugar by translocation and respirationduring the night may explain why this increase in concentrationwas not reflected in the 14C distribution 24 h after supplying14C. The proportion of the total 14C content of the shoot that wasin the ear at maturity ranged from 68 to 95 per cent dependingon when and to which leaf the 14CO2 was supplied. Less than5 per cent remained in the leaf exposed to 14CO2. The proportionof the final ear weight contributed by the leaf below the flagleaf was about half that contributed by the flag leaf. In 1974 about 24 per cent of the 14C absorbed by the flag leaf,and 56 per cent of that absorbed by the second leaf, was lostby maturity, presumably by respiration. Most loss occurred inthe first 24 h.  相似文献   

9.
Experiments were made to determine the extent of reciprocaltransfer of products (derived from the assimilation of 14CO2)between various parts of the young vegetative grass plant (Loliummultiflorum Lam.). When individual laminae on different tillerswere supplied with 14CO2, 47–64 per cent of the fixedcarbon was exported after 24 h. The principal sinks were theroot system and the shoot or tiller to which the fed leaf wasattached. Other tillers also received significant quantitiesof radiocarbon. When whole tillers were supplied with 14CO2the percentage of fixed radiocarbon exported within 24 h rangedfrom 14–31 per cent. Of this, 50–74 per cent wasrecovered from the root system (except in the case of exportfrom the youngest tiller) but exchange of material between tillersalso occurred.A reciprocity diagram is presented and it is concludedthat despite the magnitude of the exchange no tiller showedan over-all net gain or loss. The main shoot and the tillersdiffered in the extent of their carbon exchange and in theirdegree of independence. The oldest daughter tiller of the mainshoot was the most independent and the main shoot most interdependent.  相似文献   

10.
Physiological responses to root pruning were investigated bycomparing 14CO2 fixation rates, the partitioning of 14C-labelledassimilate, and soluble and insoluble carbohydrate levels inthe leaves of carrot plants following the removal of some ofthe fibrous roots, or fibrous roots and part of the tap root.Root pruning reduced 14CO2 fixation by 28–45% but leafspecific activity (14C assimilation g-1 leaf fresh weight) wasunchanged. The proportion of total assimilate exported to theroot system increased following root pruning and this was atthe expense of the developing leaves. In younger plants (wherethe tap root received 10% of the assimilate) the supply of 14Cto the tap root was maintained in spite of root pruning. However,shortening the tap root to 3 cm in older plants (in which 30%of the fixed 14C was normally exported to the developing storageorgan), reduced its sink capacity and resulted in slightly greaterretention of 14C in the mature leaves. Greater concentrationsof insoluble carbohydrate were found in the mature leaves followingroot pruning but soluble sugar content was unaffected. Onlysmall differences were observed in the distribution of 14C betweensoluble and insoluble carbohydrate fractions when plants werefed 14CO2 several days after the root pruning operations. Thesephysiological responses were mainly associated with the removalof fibrous roots and support the view that the fibrous rootsystem is more important than the developing storage organ inregulating growth in young carrot plants.  相似文献   

11.
Single leaves on growing sunflower plants were allowed to assimilate14CO2. Gibberellic acid was applied to the same leaf or to theterminal bud or the roots, and the distribution of assimilated14C was determined at intervals of 1–96 h. Gibberellicacid had no significant effect on initial distribution of 14Cduring the period of rapid export from the leaf, but enhancedre-export from the roots after translocation from the leaf hadvirtually ceased. Most of the 14C exported from the roots accumulatedin the shoot tip. The site of application of the hormone wasof relatively minor importance. Wherever it was applied themajor effect was enhancement of movement from the roots to theshoot tip. Application to the terminal bud was most effectivein this respect. There was no evidence that gibberellic aciddirectly affected the transport system, but the data supportthe hypothesis that it increases the strength of the sink inthe shoot tip. Helianthus annuus L., sunflower, assimilate transport, gibberellic acid, phloem transport  相似文献   

12.
The loss of organic material from the roots of forage rape (Brassicanapus L.,) was studied by pulse-labelling 25-d-old non-sterilesand-grown plants with 14CO2. The distribution of 14C withinthe plant was measured at 0, 6 and 13 d after labelling whilst14 C accumulating in the root-zone was measured at more frequentintervals. The rates of 14C release into the rhizosphere, andloss of 14CO2 from the rhizosphere were also determined. Thesedata were used to estimate the accumulative loss of 14C fromroots and loss respiratory 14CO2 from both roots and associatedmicro-organisms. Approximately 17-19% of fixed 14CO2 was translocatedto the roots over 2 weeks, of which 30-34% was released intothe rhizosphere, and 23-24% was respired by the roots as 14CO2. Of the 14C released into the rhizosphere, between 35-51%was assimilated and respired by rhizosphere micro-organisms.Copyright1993, 1999 Academic Press Brassica napus L., carbon loss, carbon partitioning, microbial nutrition, microbial respiration, forage rape, pulse-labelling, rhizodeposition, root respiration, sand culture  相似文献   

13.
Respiratory Loss of Recently Assimilated Carbon in Wheat   总被引:2,自引:0,他引:2  
A series of experiments was undertaken to assess the amountof respiration associated with the growth of wheat at differentstages. Plants (or in some cases just the flag leaf) were labelledwith 14CO2 and the amount of 14CO2 respired during the subsequent48 or 72 h was measured. The evolution of 14C, expressed asa percentage of the amount initially assimilated (referred toas the R/A value) was used as a measure of the overall efficiencyof dry matter production. Respiratory 14CO2 evolution from labelledplants was most rapid in the first 12 h after labelling, thereafterdeclining rapidly. Evolution was also more rapid following labellingsat the end of the light period (dusk) than at the beginningof it (dawn). The R/A values were greatest (42 and 50 per centrespectively for dawn- and dusk-labelled plants) for young plantsand least (13 and 28 per cent respectively) for plants duringmid grain filling. When flag leaves, as distinct from wholeplants, were labelled, R/A values were lower still (9 and 21per cent respectively), indicating that flag leaf assimilatewas used efficiently in grain production. The calculated minimum R/A for the formation of grain material(10 per cent protein, 90 per cent starch) was 6.2 per cent.That the experimentally determined values were greater thanthis is attributed to the turnover of carbon in enzymes, toother maintenance processes, and possibly to the operation ofthe pentose phosphate pathway of glucose oxidation. R/A valueswere lower in those plants labelled at the beginning than thoseat the end of the photoperiod. This was considered to be a consequenceof refixation of respiratory 14CO2 during the light. The higherR/A values found for young plants were considered to be a consequenceof the greater percentage of 14C translocated to the roots (rootsbeing unable to refix respired CO2) and of greater turnoverof enzymes associated with more active metabolism. Triticum, wheat, respiration, carbon assimilation, carbon loss, grain-filling  相似文献   

14.
Shishido, Y., Challa, H. and Krupa, J. 1987. Effects of temperatureand light on the carbon budget of young cucumber plants studiedby steady-state feeding with 14CO°2J. exp. Bot. 38: 1044–1054. The effect of temperature on the fate of 14C assimilated insteady-state by the expanding third leaf of cucumber seedlingswas studied at irradiances of either 30 or 75 W m–2 (PAR)with a daylength of 8 h. The irradiance did not affect the relativedistribution of 14C assimilated by the source leaf between growth,respiration and export. In the range 15–30°C risesin temperature generally increased the proportion of carbonexported. The average rate of carbon exported during the nightwas about half the rate in the day. About 45% of the exportedcarbon was lost by respiration. The distribution pattern ofcarbon exported during the day differed considerably from thatof carbon exported during the night. The intensity of irradiance did not affect the proportion oflabelled carbon recovered from the roots. Thus the decreasedshoot/root ratio generally observed with increased irradianceis not directly controlled by carbohydrate supply. We found that the distribution patterns of exported 14C do notnecessarily represent the real carbon distribution, due to differencesin specific activity of imported carbon of individual organs.Consequently distribution patterns of 14C observed in experimentswith one source leaf have to be considered with caution. Key words: Carbon budget, 14C, 14C steady-state feeding, translocation, respiration, assimilate distribution, cucumber, temperature  相似文献   

15.
Following exposure of the youngest mature leaf of uniculm barleyto 14CO2, groups of plants were harvested over a 72 h periodto determine the fate of 14C in the photosynthesizing leaf andin growing leaves and roots. Initially, 14C was mainly presentin sucrose with a little in starch and charged compounds; transportout of the fed leaf was rapid and, by 7 and 24 h, 56 and 93%respectively of the 14C had been translocated about equallyto growing leaves and roots. Sucrose entering meristems wasquickly metabolized to protein and structural carbohydrate (40and 60% of the 14C in these organs at 7 and 24 h respectively),while the remainder was converted to short-term storage productsor intermediary metabolites. By the end of the first day c.35% of the 14C originally assimilated had been lost in respiration. The metabolism of the leaf appeared to be organized on a diurnalbasis, for it exported nearly all its carbon within 24 h ofassimilation. In contrast, some of the assimilate imported intogrowing leaves and, to a lesser extent, roots was not immediatelyused for growth but persisted as temporary metabolites and wassubsequently used for growth in the following days.  相似文献   

16.
A well-developed infection of Yellow Rust on a leaf of springwheat (Jufy I) caused the assimilation of 14CO2 by that leafto decrease to 43.5 per cent of that of an uninfected leaf.Over a period of three hours translocation of 14C from an infectedleaf was only 0.87 per cent of that from a control leaf. Whencontrol plants were kept in the light for periods up to 16 hoursafter assimilating 14CO2 translocation continued at a steadyrate, whereas there was only negligible translocation from infectedleaves after the first few hours. The retention of labelledassimilates in the infected leaf could be partly, but not completely,accounted for by a conversion of assimilates to an alcohol-insolubleform. Rust infection had no effect on the distribution patternof 14C to other leaves from one which had assimilated 14CO2.In contrast to the marked retention of assimilate by an infectedleaf, such a leaf was unable to distort the normal distributionby attracting assimilates from the other leaves.  相似文献   

17.
Effects of the interaction between assimilate availability andsink demand on the metabolism of 14C assimilates in tomato leaveshave been examined in plants where the source—sink relationshipof assimilates was simplified to one leaf and one fruit truss. During experimentation the source leaf was exposed to either80 or 20 W m–2 (PAR), while the truss was either retainedor removed. Under these four source-sink conditions, a timecourse study was made on 14C assimilate distribution in thesource leaf over a period of 23 h after pulse feeding with 14CO2. While truss removal caused a temporary increase of 14C sucrosein leaves under both irradiances, the principal assimilatesaccumulated were starch and hexoses. Decreased 14C export followingtruss removal was observed within a day in well-illuminatedleaves but after 3 days in leaves under low light. The accumulationof 14C sucrose at the end of the light period was affected bytruss removal in high light leaves only 3 days later. These observations suggest that while the compartmentation ofnewly fixed assimilate was affected rapidly by the change ofsource—sink relationship, carbon export, as measured by14C loss, was affected only gradually. The possible effect of sucrose accumulation on photosynthesisis discussed.  相似文献   

18.
When 14CO2 was administered to a fully expanded leaf (12th leaf)of tobacco plant at the stage just before flower budding, about30% of 14C assimilated was translocated to other organs after3 hours. After 21 hours, 20{small tilde}30% of the radioactivitywas translocated to the roots, about 20% to upper stem, 10%to lower stem, and 10% to the 17th leaf located directly abovethe 12th leaf. The amount of 14C translocated to other leaveswas small after 31 hours. When 14CO2 was applied to the 17th leaf, radioactivity in otherorgans was negligible. Judging from the time course of 14C-incorporation into organicsubstances, it was inferred that sucrose imported into the rootsfrom the 12th leaf was converted into compounds of cationicfraction and sugar esters. 14C imported into the 17th leaf was mostly incorporated into80% ethanol-soluble fraction, especially into sucrose. On theother hand, 14C fixed photosynthetically by the 17th leaf wasmostly recovered in starch and protein fraction after 8 hoursof 14CO2 assimilation. 1A part of this paper was presented at the Japanese Societyof Plant Physiologists, in April, 1965. 2Present address: Central Research Institute, Japan MonopolyCorporation, Shinagawa-ku, Tokyo.  相似文献   

19.
Twenty-four hours after leaf 3 of a plant of Lolium multiflorumLam, was supplied with a droplet of 14C-urea and the plant enclosedin a polyethylene bag with an untreated plant, there were significantamounts of radiocarbon recovered from the untreated plant. Theleaf treated with 14C-urea was the major source of 14C leakagebut significant losses were also recorded from other parts ofthe plant. Reducing the humidity within the bag decreased theamount of 14CO2 which escaped. Losses of radiocarbon from CO2-treated plants were very low compared with those from urea-treatedplants but the pattern of assimilate distribution within thetwo types of plants was very similar. The possible causes ofthese effects are considered and the usefulness of 14C-ureaas a source of 14CO2 discussed.  相似文献   

20.
Radioactive starch, glucose and fructose have been preparedfrom tobacco leaves after assimilation of C14O2. The apparatusused for photosynthesis consisted of a shallow Perspex leafchamber connected to a closed gas system, in which C14O2 wasgenerated from BaC14O2. Six leaves, area 14 to 18 sq. dm. whenexposed to bright sunlight with an initial CO2 concentrationof 8 to 10 per cent., assimilated 3.35 g. of C14O2 in 8 to 10hours. At least 80 per cent. of the C14O2 supplied appearedin the leaves as starch and sugar and over 80 per cent. of theradioactivity was accounted for in these carbohydrates. Thespecific activity per m. atom of carbon of the isolated productswas 85 to 90 per cent. of that of the C14O2. Small amounts ofradioactive carbon were also incorporated in the leaf proteinand in the celluose, hemicellulose and polyuronides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号