首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, recommended dietary allowances (RDA) have been formulated by the Dutch Nutrition Council for minerals and trace elements, including iron (Fe). For some population groups in the Netherlands, it is questionable whether they easily meet the Fe recommendation. An increase in Fe intake is not always possible, but “manipulation” of Fe bioavailability ultimately may result in better Fe utilization. Various factors are known to affect Fe bioavailability. Generally, much attention is paid to diet-related factors, such as inhibitors and enhancers of Fe availability for absorption. Factors such as pH, oxidation potential, structure of food, and time of digestion often are overlooked. Of the diet-related factors, heme Fe and ascorbic acid have a strong positive effect on Fe availability for absorption, whereas oxalate and polyphenols seem to be strong inhibitors of Fe availability. Because of the many interactions that may occur simultaneously, the net effect of the various combined factors in a meal is not equal to the sum of the individual factors.  相似文献   

2.
The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose.  相似文献   

3.
A mammalian iron ATPase induced by iron   总被引:22,自引:0,他引:22  
While molecular mechanisms for iron entry and storage within cells have been elucidated, no system to mediate iron efflux has been heretofore identified. We now describe an ATP requiring iron transporter in mammalian cells. (55)Fe is transported into microsomal vesicles in a Mg-ATP-dependent fashion. The transporter is specific for ferrous iron, is temperature- and time-dependent, and detected only with hydrolyzable nucleotides. It differs from all known ATPases and appears to be a P-type ATPase. The Fe-ATPase is localized together with heme oxygenase-1 to microsomal membranes with both proteins greatly enriched in the spleen. Iron treatment markedly induces ATP-dependent iron transport in RAW 264.7 macrophage cells with an initial phase that is resistant to cycloheximide and actinomycin D and a later phase that is inhibited by these agents. Iron release, elicited in intact rats by glycerol-induced rhabdomyolysis, induces ATP-dependent iron transport in the kidney. Mice with genomic deletion of heme oxygenase-1 have selective tissue iron accumulation and display augmented ATP-dependent iron transport in those tissues that accumulate iron.  相似文献   

4.
The extracellular enzymatic reduction of iron by microorganisms has not been appropriately considered. In this study the reduction and release of iron from ferrioxamine were examined using extracellular microbial iron reductases and compared to iron mobilization by chemical reductants, and to chelation by EDTA and desferrioxamine. A flavin semiquinone was formed during the enzymatic reduction of ferrioxamine, which was consistent with the 1 e(-) reduction of iron by an enzyme. The rates for the enzymatic reactions were substantially faster than both the 2 e(-) chemical reductions and the chelation reactions. The rapid rates of the enzymatic reduction reactions demonstrated that these enzymes are capable of accomplishing the extracellular mobilization of iron required by microorganisms. The data suggest that mechanistically there are two phases for the mobilization and transport of iron by those microorganisms that produce both extracellular iron reductases and siderophores, with reduction being the principle pathway.  相似文献   

5.
6.
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.  相似文献   

7.
Pumping iron     
  相似文献   

8.
One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.  相似文献   

9.
Both cellular iron deficiency and excess have adverse consequences. To maintain iron homeostasis, complex mechanisms have evolved to regulate cellular and extracellular iron concentrations. Extracellular iron concentrations are controlled by a peptide hormone hepcidin, which inhibits the supply of iron into plasma. Hepcidin acts by binding to and inducing the degradation of the cellular iron exporter, ferroportin, found in sites of major iron flows: duodenal enterocytes involved in iron absorption, macrophages that recycle iron from senescent erythrocytes, and hepatocytes that store iron. Hepcidin synthesis is in turn controlled by iron concentrations, hypoxia, anemia and inflammatory cytokines. The molecular mechanisms that regulate hepcidin production are only beginning to be understood, but its dysregulation is involved in the pathogenesis of a spectrum of iron disorders. Deficiency of hepcidin is the unifying cause of hereditary hemochromatoses, and excessive cytokine-stimulated hepcidin production causes hypoferremia and contributes to anemia of inflammation.  相似文献   

10.
Oxygen and iron regulation of iron regulatory protein 2   总被引:11,自引:0,他引:11  
Iron regulatory protein 2 (IRP2) is a central regulator of cellular iron homeostasis due to its regulation of specific mRNAs encoding proteins of iron uptake and storage. Iron regulates IRP2 by mediating its rapid proteasomal degradation, where hypoxia and the hypoxia mimetics CoCl2 and desferrioxamine (DFO) stabilize it. Previous studies showed that iron-mediated degradation of IRP2 requires the presence of critical cysteines that reside within a 73-amino acid unique region. Here we show that a mutant IRP2 protein lacking this 73-amino acid region degraded at a rate similar to that of wild-type IRP2. In addition, DFO and hypoxia blocked the degradation of both the wild-type and mutant IRP2 proteins. Recently, members of the 2-oxoglutarate (2-OG)-dependent dioxygenase family have been shown to hydroxylate hypoxia-inducible factor-1 alpha (HIF-1 alpha), a modification required for its ubiquitination and proteasomal degradation. Since 2-OG-dependent dioxygenases require iron and oxygen, in addition to 2-OG, for substrate hydroxylation, we hypothesized that this activity may be involved in the regulation of IRP2 stability. To test this we used the 2-OG-dependent dioxygenase inhibitor dimethyloxalylglycine (DMOG) and showed that it blocked iron-mediated IRP2 degradation. In addition, hypoxia, DFO and DMOG blocked IRP2 ubiquitination. These data indicate that the region of IRP2 that is involved in IRP2 iron-mediated degradation lies outside of the 73-amino acid unique region and suggest a model whereby 2-OG-dependent dioxygenase activity may be involved in the oxygen and iron regulation of IRP2 protein stability.  相似文献   

11.
Ischemia-induced brain iron delocalization: Effect of iron chelators   总被引:5,自引:0,他引:5  
Tissue damage in cerebral ischemia may be produced by acidosis-induced delocalization of intracellular iron which acts as a catalyst in oxidative reactions. Acidosis was induced either by homogenization and incubation of rat cortical homogenates in acidified buffers or by submitting hyperglycemic rats to complete ischemia, a procedure that leads to intracellular lactic acidosis. The level of low molecular weight species (LMWS) iron was measured after filtration of tissue homogenates through a 10,000 Mr ultrafiltration membrane. When cortical tissue was homogenized in buffer pH 7, the level of LMWS iron was equal to 0.21 μg/g. It was significantly enhanced by acidification of the homogenization medium, reaching 0.34 μg/g at pH 6 and 0.75 μg/g at pH 5. When the tissue was homogenized in water, the LMWS iron level reached 0.17 μg/g in normoglycemic rats and 0.38 μg/g (p < 0.5) in hyperglycemic rats. Both aerobic incubation of homogenates for 1 h at 37°C and inclusion of EDTA in the homogenization medium led to further increases in the iron level. In order to demonstrate the deleterious role of iron in brain ischemia, the effect of treatment with bipyridyl, an iron-chelating agent, was assessed by measuring regional brain edema by the specific gravity method, 24 h following induction of thrombotic brain infarction. The treatment significantly attenuated the development of brain edema, reducing the water content of the infarcted area by about 2.5%. Taken together, these results support the hypothesis that a significant component of brain ischemic injury involves an iron-dependent mechanism.  相似文献   

12.
Mining iron: iron uptake and transport in plants   总被引:7,自引:0,他引:7  
Kim SA  Guerinot ML 《FEBS letters》2007,581(12):2273-2280
  相似文献   

13.

Background

A healthy human can produce over 1?×?1015 blood cells throughout their life. This remarkable amount of biomass requires a concomitantly vast amount of iron to generate functional haemoglobin and functional erythrocytes.

Scope of the review

Erythroblasts form multicellular clusters with macrophages in the foetal liver, bone marrow and spleen termed erythroblastic islands. How the central erythroblastic island macrophage co-ordinates the supply of iron to the developing erythroblasts will be a central focus of this review.

Major conclusion

Despite being studied for over 60?years, the mechanisms by which the erythroblastic island niche serves to control erythroid cell iron metabolism are poorly resolved.

General significance

Over 2 billion people suffer from some form of anaemia. Iron deficiency anaemia is the most prevalent form of anaemia. Therefore, understanding the processes by which iron is trafficked to, and metabolised in developing erythrocytes, is crucially important.  相似文献   

14.
15.
Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction   总被引:15,自引:0,他引:15  
Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth's crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy.  相似文献   

16.
Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

17.
Soils contain various iron compounds that differ in solubility, reducibility and extractability. Moreover, the contribution of the various iron compounds to total iron (Fe) and total Fe concentrations differs highly among soils. As a result, the total reducible Fe content can also differ among soils, and so does the dynamics of iron reduction. These factors complicate the prediction of reducible Fe based on Fe extraction data and hamper the application of process-based models for reduced or waterlogged soils where redox processes play a key-role. This paper presents a theoretical analysis relating reducible to extractable Fe reported in the literature. Predictions made from this theoretical analysis were evaluated in soil incubations using 18 rice paddy soils from all over the world. The incubation studies and the literature study both show that reducible Fe can be related to Fe from some selected, but not all, iron extractions. The combination of measurements for labile Fe(III)oxides (derived from oxalate-extractable Fe) and stabile Fe(III)oxides (derived from dithionite-citrate-extractable Fe) shows highly significant correlations with reducible Fe with high coefficients of determination (r2 = 0.92–0.95 depending on the definition of stabile Fe(III)oxides). Given the high diversity in rice soils used for the incubations, these regression equations will have general applicability. Application of these regression equations in combination with soil database information may improve the predictive ability of process-based models where soil redox processes are important, such as CH4 emission models derived for rice paddies or wetlands.  相似文献   

18.
BackgroundIron export via the transport protein ferroportin (Fpn) plays a critical role in the regulation of dietary iron absorption and iron recycling in macrophages. Fpn plasma membrane expression is controlled by the hepatic iron-regulated hormone hepcidin in response to high iron availability and inflammation. Hepcidin binds to the central cavity of the Fpn transporter to block iron export either directly or by inducing Fpn internalization and lysosomal degradation. Here, we investigated whether iron deficiency affects Fpn protein turnover.MethodsWe ectopically expressed Fpn in HeLa cells and used cycloheximide chase experiments to study basal and hepcidin-induced Fpn degradation under extracellular and intracellular iron deficiency.Conclusions/General significanceWe show that iron deficiency does not affect basal Fpn turnover but causes a significant delay in hepcidin-induced degradation when cytosolic iron levels are low. These data have important mechanistic implications supporting the hypothesis that iron export is required for efficient targeting of Fpn by hepcidin. Additionally, we show that Fpn degradation is not involved in protecting cells from intracellular iron deficiency.  相似文献   

19.
The utility of employing biogenerated ferric iron as an oxidant for the recycling of scrap metal has been demonstrated using continuously growing cells of the extremophilic organism Acidithiobacillus ferrooxidans. A ferric iron rich (70 mol%) lixiviant resulting from bioreactor based growth of A. ferrooxidans readily solubilized target scrap metal with the resultant generation of a leachate containing elevated ferrous iron levels and solubilized copper previously resident in the scrap metal. Recovery of the copper value was easily accomplished via a cementation reaction and the clarified leachate containing a replenished level of ferrous iron as growth substrate was shown to support the growth of A. ferrooxidans and be fully recyclable. The described process for scrap metal recycling and copper recovery was shown to be efficient and economically attractive. Additionally, the utility of employing the E(h) of the growth medium as a means for monitoring fluctuations in cell density in cultures of A. ferrooxidans is demonstrated.  相似文献   

20.
Non-transferrin-bound iron (NTBI) was detected in serum samples from volunteers with normal iron stores or from patients with iron deficiency anaemia after oral application of pharmaceutical iron preparations. Following a 100 mg ferrous iron dosage, NTBI values up to 9 μM were found within the time period of 1–4 h after administration whereas transferrin saturation was clearly below 100%. Smaller iron dosages (10 and 30 mg) gave lower but still measurable NTBI values. The physiological relevance of this finding for patients under iron medication has to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号