首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肌肉收缩为身体的各种活动提供基本动力,例如行走、写字、说话、呼吸、心跳等。肌肉收缩时,肌肉内部的化学变化和能量变化可概括成三个部分: 一、三磷酸腺苷(ATP)分解所提供的能量是肌肉收缩的直接能源. 当运动神经纤维上的神经冲动到达肌纤维时,肌纤维内一系列微观的兴奋性变化,激发了ATP酶活性,引起ATP分解成二磷酸腺苷(ADP)及磷酸根(P)高能磷酸键的断开可释放较多的能量(E)。  相似文献   

2.
在高中生物课本《生物的能源》一节中说,当ADP和磷酸转变成ATP时,“能量就贮存在其中的高能磷酸键里”,“高能磷酸键断裂时,释放大量的能量”。在《教学参考书》和其它一些生物学参考书中也是这种说法。而在高一化学里是说断开化学键需吸收能量,反之则放能。如何正确理解高能磷酸键的含意,了解ATP水解时释放较高的自由能的原因,并把生物学知识尽可能地同理化知识联系起来、融会贯通,是值得探讨的。下面就这些问题谈点自己的学习体会。  相似文献   

3.
呼吸作用是一个释能的过程,植物体如何储存能量和利用能量,是一个非常重要的问题.呼吸作用放出的能量,一部分以热能的形式散失到环境中,其余部分通过ADP磷酸化形成ATP,而暂时储存在高能磷酸键中.三磷酸腺苷中的高能磷酸键是最重要的能量携带者,呼吸过程中能量的储存和利用都要靠ATP.  相似文献   

4.
心肌细胞力能学的现代问题   总被引:1,自引:0,他引:1  
心脏主要通过氧化磷酸化过程生成ATP。这一过程发生在线粒体内膜所包围的基质(matrix)内。ATP和ADP不能透过线粒体膜,生成的ATP被位于线粒体内膜的ATP-ADP易位酶,从线粒体内膜间隙转到外膜间隙,再通过磷酸肌酸途径转移到收缩系统;同时将外膜间隙的ADP转移至线粒体内膜间隙,接受高能磷酸键再合成ATP。如此往复,保障收缩系统不断得到能量供应。胞浆内高水平的肌酸和线粒体内膜间隙低水平的ADP是细胞内能量代谢过程的重要调节机制,肌酸磷酸激酶(CPK)同功酶在其中起着重要作用。肌浆网膜对于Ga~( )的摄取和释放是心肌兴奋-收缩偶联的重要调控部位。但是,除能量生成过程研究得较清楚外,涉及能量转运、贮存及利用过程的许多力能学问题尚未阐明。  相似文献   

5.
腺三磷酶(ATPase)是一种能够催化高能磷酸化合物腺三磷(ATP)分解的酶,ATP 分解后产生出大量的储藏能,因此 ATPase-ATP 系统在各种生命活动,包括胚胎发育的能量供给过程中,起着重要的作用。ATP-ase 除了与发育过程中能量的供给有关之外,还关  相似文献   

6.
本文报道了一种快速、灵敏的血小板释放功能检测方法:利用荧光素-荧光素酶在有ATP、Mg~(2+)、O_2存在时产生的生物发光素测定血小板ATP的释放量,以反映血小板的释放功能;研究了ADP、AA、胶原、凝血酶等四种诱导剂对血小板释放功能的作用,发现ADP的诱导释放能力较其他三者为弱;观察在不同剂量ADP和AA的诱导下,血小板聚集强度和释放能力之间的关系,研究了血小板数等因素对ATP释放功能测定的影响。应用该方法研究了Aspirin及活血化淤药物川芎嗪,毛冬青甲素对血小板释放功能的影响,发现Aspirin对AA诱导的释放反应有强烈的抑制作用。在以ADP诱导的释放反应中,川芎嗪的抑制作用较毛冬青甲素更为强烈。  相似文献   

7.
焦磷酸在植物细胞能量代谢中的作用(综述)   总被引:1,自引:0,他引:1  
ADVANCESINRESEARCHONTHEROLESOFPYROPHOSPHATEINCELLULARENERGYMETABOLISMOFPLANTSWangYixing(DepartmentofBiology,JinanUniversity,Guangzhou510632)LiMingqi(DepartmentofAgriculturalBiology,SouthChinaAgriculturalUniversity,Guangzhou510642)焦磷酸(PPi)是一种高能化合物,其水解的G为-33.4kJmol,即PPi水解释放的自由能与ATP相似(ATP水解为ADP和Pi的G为-31.3kJmol)。但是对于焦磷酸代谢的传统观点是:细胞内焦磷酸水平很低,代谢中的焦磷酸,主要是在大分子如蛋白质、淀粉等生…  相似文献   

8.
答当我们在各种剧烈运动之后,身体的骨胳肌会产生一种酸痛感,几天后酸痛便消失。我们知道,人必需不断从外界环境中摄取氧气,将体内有机物质分解为二氧化碳和水等彻底的氧化产物,释放大量的能量,供各项生理活动利用。在剧烈运动时,全身骨胳肌特别是下肢肌收缩活动加强,急需大量能量供给,这时呼吸频率、心率逐渐加快,血液循环加速,而且体内大部分血液被输送到运动系统,尽管如此,仍然不能满足体内糖类完全氧化所需的氧气  相似文献   

9.
答:高等动物(包括人类),进行呼吸作用的主要方式是有氧呼吸,由糖类的分解为生命活动提供能量,是机体供能的主要代谢途径。但是,机体也普遍存在着无氧呼吸供能的代谢途径,即通过糖酵解为生命活动提供少量的能量,其最终产物是乳酸。激烈运动形成暂时缺氧状态或由于呼吸、循环机能障碍而供氧不足时,能供应大量能量的有氧氧化过程不能顺利进行。此时,糖酵解作用加强,以释放一部份能量应付急需,在这种情况下。糖酵解的最终产物乳酸产生过多,如不能及时转化,就会引起酸中毒现象。  相似文献   

10.
ATP具有高能磷酸键,在生物体能量的交换中占着中心地位。蛋白质生物合成、肌肉收缩和磷酰基的转移等重要生理过程,都必须有它参加。同位素标记的ATP对研究代谢过程提供了一项有效的方法,对某些可利用它来测  相似文献   

11.
答:新陈代谢所需要的能量是由细胞内的ATP直接提供的,ATP是新陈代谢所需能量的直接来源,但体内有些合成反应不一定都直接利用ATP供能,而可以利用其他三磷酸核苷。例如UTP(三磷酸尿苷)用于多糖合成、CTP(三磷酸胞苷1用于磷脂合成、GTP(三磷酸鸟苷)用于蛋白质合成等。但物质氧化时释放的能量大都是必须先合成ATP。然后ATP可使UDP、CDP或GDP生成相应的UTP、CTP或GTP。  相似文献   

12.
从这章开始,我们将介绍组成生物体的主要物质在生物体内是如何变化的,如何相互转化的,变化过程中的能量又是如何转化的,即物质代谢。首先要学习新陈代谢的有关概念,再学习具体的代谢途径。学习“新陈代谢的概念”这一节,要注意准确地掌握基本概念。如什么是新陈代谢?什么是合成代谢?什么是分解代谢?以及了解新陈代谢的特点。随着学习具体的代谢途径,对新陈代谢的认识会逐步具体、深入。在这一节中要简要介绍有关高能化合物的知识。要求掌握什么是高能化合物,并了解腺苷三磷酸(ATP)、磷酸烯醇式丙酮酸、甘油酸-1.3-二磷酸、乙酰CoA等是生物体内常见的高能化合物。对于ATP的结构应熟悉。1摩尔ATP水解成ADP时可释放出7.3千卡(30.5KJ)的能量。  相似文献   

13.
问题解答     
问:为什么ATP中高能磷酸键的断裂是释放大量能量的反应? (郑州读者吕燕李玉成) 答:ATP是三磷酸腺苷的简称。它是由一分子腺苷和三个相连的磷酸根组成的。  相似文献   

14.
高能磷酸键的概念是Lipmaan在1941年提出的,对生物化学的发展曾起过一定作用。我国1981年以前出版的生理和生化方面的书,讲ATP水解释放能量时都引用了高能磷酸键概念。由于该概念不恰当和理论上的错误,我国1982年后出版的有些生物化学  相似文献   

15.
一、填充题 (本题共15分、分六小题任选五小题。如六小题全答按前面五小题给分) l、每种蛋白质都含有_一_四种元素 它是由很多_一__相互结合而成的。蛋白是组成_.__一的主要成分之一。 2、细胞膜是由___._和_一_~‘_构成的,从细胞跟外界进行物质交换来看细胞膜是一种_二_,__膜. 3、在ATP转变成ADP的过程中,___,_._能量;在ADP转变成ATP的过程中ADP_二__._物质代谢释放的能量,贮藏备用。这些转乡都必需有酶参加。 4、很据生物的同化方式的不同,生物可以分成两大类型:一种类型是_二__._,这类生物大多数都是绿色植物;另一种类型是_,,__._,…  相似文献   

16.
薄膜氧电极的制作与呼吸或光合控制的测定   总被引:48,自引:1,他引:48  
线粒体的呼吸耗氧或叶绿体的光合放氧,都偶联着腺二磷(ADP)与无机磷(Pi)合成腺三磷(ATP)的磷酸化反应。ADP∶O值是指线粒体每吸收或叶绿体每释放一克原子氧的同时,酯化转变ADP成ATP的克分子数的比值,它反映这两种细胞器的能量转化效率。自从Chance根据线粒体系统的底物呼吸水平,氧吸收速率受到ADP和Pi促进而提出呼吸控制的观念以后,叶绿体的希尔放氧反应中也以同样的观念提出了光合控制。这些控制数值与ADP∶O比值一起,都成为衡量线粒体或叶绿体机构完善与否的重要生化指标。这些反应  相似文献   

17.
生物学文摘     
世界首创人造种子的冷藏保存技术日本的石川岛播磨重工业公司研究成功了一项人造种子的冷藏保存技术,可将利用组织培养制成的人造种子,例如胡萝卜的不定胚成功地贮藏3个月。肌酸可缓解体力疲劳英国参加调查过肌酸的效应的一生理学家指出,肌酸在3个方面有助于运动员:首先,它为肌细胞提供能源储存。在三磷酸腺苷(ATP)供应耗尽时,肌肉可由此提取能量。其次,肌酸可中和积累在肌肉中的酸。其三,肌酸帮助把能量输送到分布在细胞中的供肌肉收缩的  相似文献   

18.
秦斌  齐静 《生物磁学》2011,(1):176-179
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

19.
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

20.
鼠脑驱动蛋白(rat brain kinesin)是一种利用水解ATP所释放的能量在微管束上高速并且连续性运动的常规驱动蛋白. 它在神经突触的物质运输中起着重要作用. 研究驱动蛋白是如何将ATP中储藏的化学能转化为机械动能是理解其运动机能的重要课题. 本课题获得了鼠脑驱动蛋白单体与ATP结构类似物AMPPCP形成的复合物晶体结构. 将这个晶体结构与鼠脑驱动蛋白单体-另一种ATP结构类似物AMPPNP形成的复合物晶体结构以及鼠脑驱动蛋白单体-ATP水解产物ADP形成的复合物晶体结构进行相互比较,揭示了活性中心的开关区域I中丝氨酸203可能作为质子的供体,加速了ATP中gamma-磷酸和beta-磷酸的断裂,从而导致ATP的水解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号