首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phospholipid biosynthetic enzyme activities: CDP-diglyceride synthetase, phosphatidylglycerophosphate synthetase, PGP phosphatase, phosphatidylserine (PS) synthase, PS decarboxylase, and S-adenosyl-L-methionine:phosphatidylethanolamine (AdoMet:PE) N-methyltransferase were detected in crude cell-free extracts of Rhodopseudomonas sphaeroides. CDP-diglyceride synthetase and phosphatidylglycerophosphate synthetase co-enriched with penicillin-binding protein activity, a known cytoplasmic membrane marker, throughout fractionation of cell-free extracts of both chemoheterotrophically and photoheterotrophically grown cells. PS decarboxylase also co-enriched with the cytoplasmic membranes in fractions derived from chemoheterotrophically and photoheterotrophically grown cells, but substantially greater quantities of PS decarboxylase activity was found in the chromatophores derived from photoheterotrophically grown cells than could be accounted for by cytoplasmic membrane contamination of this sample. PS synthase (60% of the recovered activity) and S-adenosyl-L-methionine:phosphatidylethanolamine N-methyltransferase (90% of the recovered activity) were found in the supernatant fraction after high speed centrifugation of crude cell lysates, suggesting that these enzyme activities were not tightly membrane associated. The localization of phospholipid biosynthetic enzyme activity in R. sphaeroides is discussed in terms of the biosynthesis of the photosynthetic membranes.  相似文献   

2.
The relationship between the culture levels of guanosine-5'-diphosphate-3'-diphosphate (ppGpp) and the rates of synthesis and accumulation of cellular phospholipids was examined in cultures of Rhodopseudomonas sphaeroides that had been subjected to immediate decreases in incident light intensity. After a high-to-low light transition of high-light-adapted cells, an immediate inhibition of total cellular phospholipid production occurred coincident with a rapid accumulation of culture ppGpp. The inhibition of phospholipid accumulation occurred at the level of phospholipid synthesis rather than turnover, and both the extent of ppGpp accumulation and the degree of inhibition of phospholipid synthesis were directly dependent upon the magnitude of the light transition. Maximum inhibition (greater than 90%) of the rate of cellular phospholipid synthesis occurred after transitions from 5,350 to 268 1x and lower, including transitions to the dark, with comparable inhibition being exerted upon the rates of synthesis of individual species of phospholipids. Reinitiation of culture phospholipid accumulation in cultures shifted from 5,350 to 1,070 1x and lower occurred 65 to 70 min subsequent to the downshift in light intensity, apparently irrespective of the culture level of ppGpp.  相似文献   

3.
Plasmids R68.45, RP4, RP4::Mu cts62, RP1ts::Tn10, RP1ts::Tn9, Rts1 and RP41 were transferred into cells of photosynthetic nitrogen-fixation bacterium Rhodopseudomonas sphaeroides from Escherichia coli and Pseudomonas aeruginosa. The transfer of plasmids occurred with high frequency of 10(-1) to 10(-2) per donor cell in all cases. Mobilization of R. sphaeroides 2R chromosome was obtained by RP4 and Rts1 plasmids at a frequency of 10(-7) to 10(-8) per donor cell in all cases. Mobilization of R. sphaeroides 2R chromosome was obtained by RP4 and Rts1 plasmids at a frequency of 10(-7) to 10(-8) per donor cell. Bacteriophage Mu cts62 could be induced from the plasmid DNA in R. sphaeroides 2R cells and was capable of the lytic growth and producing phage progeny. It was demonstrated that an increase in the efficiency of donor chromosomal genes transfer into recipient cells could be achieved in crosses with the donor carrying RP4::Mcts62 plasmid.  相似文献   

4.
5.
Plasmid RP4 (among others) has been transferred from Escherichia coli to Rhodopseudomonas sphaeroides. Data bearing on the physical presence of the plasmid and its expression of drug resistance determinants in R. sphaeroides are presented. Conditions of transfer between R. sphaeroides strains, between R. sphaeroides and R. capsulata, and between R. sphaeroides and E. coli have been carefully defined.  相似文献   

6.
The cellular content of phospholipid transfer activity in Rhodopseudomonas sphaeroides was examined as a function of both oxygen partial pressure and light intensity used for growth. Cells grown under high light conditions (100 W/m2) had over two times the cellular level of phospholipid transfer activity when compared with cells grown under other conditions. Although cells grown under low light conditions (3 W/m2) had the lowest amount of total phospholipid transfer activity, they had the highest level (49%) of membrane-associated transfer activity. The soluble phospholipid transfer activity was further localized into periplasmic and cytoplasmic fractions. The distribution of phospholipid transfer activity in cells grown under medium light intensity (10 W/m2) was calculated as 15.1% membrane-associated, 32.4% in the periplasm, and 52.5% in the cytoplasm. The phospholipid transfer activities in the periplasmic and cytoplasmic fractions had distinctly different properties with respect to their molecular weights (56,000 versus 27,000) and specificities of transfer (phosphatidylethanolamine greater than phosphatidylglycerol versus phosphatidylglycerol greater than phosphatidylethanolamine).  相似文献   

7.
Plasmid R68.45 was transferred from Pseudomonas aeruginosa PAO25 to the photosynthetic species Rhodopseudomonas gelatinosa and Rhodopseudomonas sphaeroides by selection for resistance to antibiotics. R. sphaeroides strains carrying the plasmid could transfer the plasmid and also chromosomal genes to other strains of R. sphaeroides.  相似文献   

8.
Alterations in the phospholipid head group composition of most strains of Rhodopseudomonas sphaeroides, as well as Rhodopseudomonas capsulata and Paracoccus denitrificans, occurred when cells were grown in medium supplemented with Tris. Growth of R. sphaeroides M29-5 in Tris-supplemented medium resulted in the accumulation of N-acylphosphatidylserine (NAPS) to as much as 40% of the total whole-cell phospholipid, whereas NAPS represented approximately 28 an 33% of the total phospholipid when R. capsulata and P. denitrificans respectively, were grown in medium containing 20 mM Tris. The accumulation of NAPS occurred primarily at the expense of phosphatidylethanolamine in both whole cells and isolated membranes of R. sphaeroides and had no detectable effect on cell growth under either chemoheterotrophic or photoheterotrophic conditions. Yeast extract (0.1%) and Casamino Acids (1.0%) were found to be antagonistic to the Tris-induced (20 mM) alteration in the phospholipid composition of R. sphaeroides. The wild-type strains R. sphaeroides 2.4.1 and RS2 showed no alteration in their phospholipid composition when they were grown in medium supplemented with Tris. In all strains of Rhodospirillaceae tested, as well as in P. denitrificans, NAPS represented between 1.0 and 2.0% of the total phospholipid when cells were grown in the absence of Tris. [32P]orthophosphoric acid entered NAPS rapidly in strains of R. sphaeroides that do (strain M29-5) and do not (strain 2.4.1) accumulate this phospholipid in response to Tris. Our data indicate that the phospholipid head group composition of many Rhodospirillaceae strains, as well as P. denitrificans, is easily manipulated; thus, these bacteria may provide good model systems for studying the effects of these modifications on membrane structure and function in a relatively unperturbed physiological system.  相似文献   

9.
The in vivo metabolic pathways of phospholipid biosynthesis in Rhodopseudomonas sphaeroides have been investigated. Rapid pulse-chase-labeling studies indicated that phosphatidylethanolamine and phosphatidylglycerol were synthesized as in other eubacteria. The labeling pattern observed for N-acylphosphatidylserine (NAPS) was inconsistent with the synthesis of this phospholipid occurring by direct acylation of phosphatidylserine (PS). Rather, NAPS appeared to be kinetically derived from an earlier intermediate such as phosphatidic acid or more likely CDP-diglyceride. Tris-induced NAPS accumulation specifically reduced the synthesis of PS. Treatment of cells with a bacteriostatic concentration of hydroxylamine (10 mM) greatly reduced total cellular phospholipid synthesis, resulted in accumulation of PS, and stimulated the phosphatidylglycerol branch of phospholipid metabolism relative to the PS branch of the pathway. When the cells were treated with a lower hydroxylamine dosage (50 microM), total phospholipid synthesis lagged as PS accumulated, however, phospholipid synthesis resumed coincident with a reversal of PS accumulation. Hydroxylamine alone was not sufficient to promote NAPS accumulation but this compound allowed continued NAPS accumulation when cells were grown in medium containing Tris. The significance of these observations is discussed in terms of NAPS biosynthesis being representative of a previously undescribed branch of the phospholipid biosynthetic sequence.  相似文献   

10.
Intermembrane linkage mediated by tubulin   总被引:2,自引:0,他引:2  
Two membranes from brain lipids were formed in the presence of brain tubulin and their electrical potentials were simultaneously measured. When electrical pulses were applied across one of them, displacements of the potential of the other membrane were found even when the membranes were not in contact. This effect was observed only in the presence of polymerized tubulin. It was not found in the presence of depolymerized tubulin or in other control experiments. The findings suggest that the microtubule fiber networks may serve as an interconnecting system between membranes or membrane bounded compartments.  相似文献   

11.
Abstract Activity of the key enzyme for tetrapyrrole biosynthesis, 5-aminolevulinic acid synthase, was inhibited upon irradiation of cell-free extracts from Rhodopseudomonas sphaeroides . maximum inactivation was observed after irradiation with light of 422, 522 and 552–556 nm. The relevance of this effect in the control of bacteriochlorophyll synthesis is discussed.  相似文献   

12.
13.
Genetic transformation of Rhodopseudomonas sphaeroides by plasmid DNA.   总被引:15,自引:11,他引:4       下载免费PDF全文
A broad-host-range cloning vector, pUI81, was constructed in vitro from plasmids RSF1010 and pSL25 (a pBR322 derivative) and used to assay for transformation in Rhodopseudomonas sphaeroides. Washing cells with 500 mM Tris was an effective means of inducing competence for DNA uptake. Transformation frequencies as high as 10(-5) (transformants per viable cell) have been achieved by incubating Tris-treated cells with plasmid DNA, 100 mM CaCl2, and 20% polyethylene glycol 6000. Maximum frequencies were obtained when recipient cells were spread onto selective media after a 6.5-h outgrowth period in antibiotic-free medium. The structure (open circular versus closed, covalent circular), size, and concentration of plasmid DNA all significantly affected the transformation frequency. Four different plasmids, all small and suitable as cloning vectors, have been introduced by transformation into several different R. sphaeroides strains. Recombinant DNA carried on small, nonconjugative plasmids with broad host ranges can now be directly transferred to R. sphaeroides by this method.  相似文献   

14.
The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed.  相似文献   

15.
The effects of growth conditions on phospholipid composition in Rhodopseudomonas sphaeroides have been reexamined. The levels of phosphatidylethanolamine (27 to 28%), phosphatidylglycerol (23 to 24%), and phosphatidylcholine (11 to 18%) were very similar in cells grown aerobically or phototrophically at a high light intensity, consistent with findings for another member of Rhodospirillaceae. In addition, an unknown phospholipid species was detected which comprised 20 to 30% of the total phospholipid in these cells. In cells growing phototrophically at low-intensity illumination, the level of phosphatidylethanolamine increased by about 1.6-fold and that of the unknown phospholipid markedly decreased. Although the synthesis of photosynthetic pigments, light-harvesting protein, and intracytoplasmic photosynthetic membranes also increased markedly, the ratios of individual phospholipid species were essentially identical in photosynthetic membrane and cell wall fractions purified from these cells. Since a significant exchange of lipids apparently did not occur during the isolation of these fractions, it was suggested that the changes in cellular phospholipid accumulation were not due to a unique composition within the photosynthetic membrane. Instead, these phosphoglyceride changes were found to be related to overall phospholipid metabolism and could be accounted for principally by differences in biosynthetic rates. These results, together with studies in nutrient-restricted aerobic cells, suggested that the mechanism by which phospholipid levels are regulated may be related to radiant energy flux rather than cellular energy limitation.  相似文献   

16.
Glycerol dissimilation in Rhodopseudomonas sphaeroides.   总被引:3,自引:2,他引:1       下载免费PDF全文
Rhodopseudomonas sphaeroides followed a diauxic growth curve when grown on a malate-glycerol medium, the first phase of growth being supported by malate and the second by glycerol. A soluble glycerokinase and a particulate, pyridine nucleotide-independent glycerophosphate dehydrogenase, were induced by the presence of glycerol in the medium, but neither was fully expressed nor functional until all malate had been consumed.  相似文献   

17.
The kinetics of accumulation of phospholipids into the intracytoplasmic membrane of Rhodopseudomonas sphaeroides have been examined. We have previously demonstrated that accumulation of phospholipids in the intracytoplasmic membrane is discontinuous with respect to the cell cycle. In this study we demonstrated a sevenfold increase in the rate of phospholipid incorporation into the intracytoplasmic membrane concurrent with the onset of cell division. Pulse-chase labeling studies revealed that the increase in the rate of phospholipid accumulation into the intracytoplasmic membrane results from the transfer of phospholipid from a site other than the intracytoplasmic membrane, and that the transfer of phospholipid, rather than synthesis of phospholipid, is most likely subject to cell cycle-specific regulation. The rates of synthesis of the individual phospholipid species (phosphatidylethanolamine, phosphatidyglycerol, and an unknown phospholipid) remained constant with respect to one another throughout the cell cycle. Similarly, each of these phospholipid species appeared to be transferred simultaneously to the intracytoplasmic membrane. We also present preliminary kinetic evidence which suggested that phosphatidylethanolamine may be converted to phosphatidycholine within the intracytoplasmic membrane.  相似文献   

18.
A rapid, gratuitous and cell-division uncoupled induction of intracytoplasmic photosynthetic membrane formation was demonstrated in low-aeration suspensions of chemotrophically grown Rhodopseudomonas sphaeroides. Despite a nearly 2-fold increase in phospholipid levels, no significant increases were detected in the specific activities of CDP-1,2-diacyl-sn-glycerol:sn-glycerol-3-phosphate phosphatidyltransferase (phosphatidylglycerophosphate synthase, EC 2.7.8.5) and CDP-1,2-diacyl-sn-glycerol:L-serine O-phosphatidyltransferase (phosphatidylserine synthase, EC 2.7.8.8), the first committed enzymes of anionic and zwitterionic phospholipid biosyntheses, respectively. The distribution of phosphatidylglycerophosphate and phosphatidylserine synthase activities after rate-zone sedimentation of cell-free extracts indicated that intracytoplasmic membrane phospholipids were synthesized mainly within distinct domains of the conserved cytoplasmic membrane. Labeling studies with 32Pi and L-[3H]phenylalanine suggested that preexisting phospholipid was utilized initially as the matrix for insertion of intracytoplasmic membrane protein that was synthesized and assembled de novo during induction.Abbreviations BChl bacteriochlorophyll a - B800-850, B875 peripheral and core light-harvesting BChl-protein complexes, respectively, identified by near-IR absorption maxima This paper is dedicated to Professor Gerhart Drews on the occasion of his sixtieth birthday  相似文献   

19.
Plasmids RP1, R68.45 and RP4::Mu cts 61 were transferred into Rhodopseudomonas capsulata from Escherichia coli. The frequency of intraspecies transfer of these plasmids in R. capsulata was 10-4–10-5 per donor. The plasmids also mobilized chromosomal genes at a low frequency. Phototrophic recombinants from matings between recipient strains defective in the photosynthetic-apparatus and wild type donors were obtained at a frequency of 10-7–10-8 per donor.  相似文献   

20.
From polluted water of a lagoon pond a new type of denitrifying photosynthetic purple bacteria was isolated. With respect to morphology, fine structure, photopigments, requirement for growth factors, the range of utilization of organic substrates for phototrophic growth and DNA base ratio, the denitrifying strains show the closest resemblance to Rhodopseudomonas sphaeroides and were therefore described as a subspecies named R. sphaeroides forma sp. denitrificans. The new isolates grow well with nitrate anaerobically in the dark accompanying the evolution of nitrogen gas. They cannot assimilate nitrate as the nitrogen source for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号