首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myburgh, Kathryn H., and Roger Cooke. Response ofcompressed skinned skeletal muscle fibers to conditions that simulate fatigue. J. Appl. Physiol. 82(4):1297-1304, 1997.During fatigue, muscles become weaker, slower,and more economical at producing tension. Studies of skinned musclefibers can explain some but not all of these effects, and, inparticular, they are less economical in conditions that simulatefatigue. We investigated three factors that may contribute to thedifferent behavior of skinned fibers. 1) Skinned fibers have increasedmyofilament lattice spacing, which is reversible by osmoticcompression. 2) A myosin subunit becomes phosphorylated during fatigue.3) Inosine 5-monophosphate (IMP) accumulates during fatigue. We tested the response ofphosphorylated and unphosphorylated single skinned fibers (isometrictension, contraction velocity, and adenosinetriphosphatase activity) to changes in lattice spacing (0-5% dextran) and IMP (0-5 mM)in the presence of altered concentrations ofPi (3-25 mM),H+ (pH 7-6.2), and ADP(0-5 mM). The response of maximally activated skinned fibers tothe direct metabolites of ATP hydrolysis is not altered by osmoticcompression, phosphorylating myosin subunits, or increasing IMPconcentration. These factors, therefore, do not explain the discrepancybetween intact and skinned fibers during fatigue.

  相似文献   

2.
ATP is proposed to be a major inhibitory neurotransmitter in the gastrointestinal (GI) tract, causing hyperpolarization and smooth muscle relaxation. ATP activates small-conductance Ca2+-activated K+ channels that are involved in setting the resting membrane potential and causing inhibitory junction potentials. No reports are available examining the effects of ATP on voltage-dependent inward currents in GI smooth muscle cells. We previously reported two types of voltage-dependent inward currents in murine proximal colonic myocytes: a low-threshold voltage-activated, nonselective cation current (IVNSCC) and a relatively high-threshold voltage-activated (L-type) Ca2+ current (IL). Here we have investigated the effects of ATP on these currents. External application of ATP (1 mM) did not affect IVNSCC or IL in dialyzed cells. ATP (1 mM) increased IVNSCC and decreased IL in the perforated whole-cell configuration. UTP and UDP (1 mM) were more potent than ATP on IVNSCC. ADP decreased IL but had no effect on IVNSCC. The order of effectiveness was UTP = UDP > ATP > ADP. These effects were not blocked by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS), but the phospholipase C inhibitor U-73122 reversed the effects of ATP on IVNSCC. ATP stimulation of IVNSCC was also reversed by protein kinase C (PKC) inhibitors chelerythrine chloride or bisindolylmaleimide I. Phorbol 12,13-dibutyrate mimicked the effects of ATP. RT-PCR showed that P2Y4 is expressed by murine colonic myocytes, and this receptor is relatively insensitive to PPADS. Our data suggest that ATP activates IVNSCC and depresses IL via binding of P2Y4 receptors and stimulation of the phospholipase C/PKC pathway. inhibitory junction potentials; smooth muscle; enteric nervous system  相似文献   

3.
Our objective inthis study was to determine the effect of changes in luminal andcytoplasmic pH on cystic fibrosis transmembrane regulator (CFTR)Cl conductance(GCl). Wemonitored CFTRGCl in the apicalmembranes of sweat ducts as reflected byCl diffusion potentials(VCl) andtransepithelial conductance(GCl). We foundthat luminal pH (5.0-8.5) had little effect on thecAMP/ATP-activated CFTRGCl, showing thatCFTR GCl ismaintained over a broad range of extracellular pH in which it functionsphysiologically. However, we found that phosphorylation activation ofCFTR GCl issensitive to intracellular pH. That is, in the presence of cAMP and ATP [adenosine5'-O-(3-thiotriphosphate)],CFTR could be phosphorylated at physiological pH (6.8) but not at lowpH (~5.5). On the other hand, basic pH prevented endogenousphosphatase(s) from dephosphorylating CFTR.After phosphorylationof CFTR with cAMP and ATP, CFTRGCl is normallydeactivated within 1 min after cAMP is removed, even in the presence of5 mM ATP. This deactivation was due to an increase in endogenousphosphatase activity relative to kinase activity, since it was reversedby the reapplication of ATP and cAMP. However, increasing cytoplasmicpH significantly delayed the deactivation of CFTRGCl in adose-dependent manner, indicating inhibition of dephosphorylation. Weconclude that CFTRGCl may beregulated via shifts in cytoplasmic pH that mediate reciprocal controlof endogenous kinase and phosphatase activities. Luminal pH probably has little direct effect on these mechanisms. This regulation of CFTRmay be important in shifting electrolyte transport in the duct fromconductive to nonconductive modes.

  相似文献   

4.
Isotonic and isometric properties of nine human bronchial smoothmuscles were studied under various loading and tone conditions. Freshlydissected bronchial strips were electrically stimulated successively atbaseline, after precontraction with107 M methacholine (MCh),and after relaxation with105 M albuterol (Alb).Resting tension, i.e., preload determining optimal initial length(Lo) atbaseline, was held constant. Compared with baseline, MCh decreasedmuscle length to 93 ± 1%Lo(P < 0.001) before any electricalstimulation, whereas Alb increased it to 111 ± 3%Lo(P < 0.01). MCh significantlydecreased maximum unloaded shortening velocity (0.045 ± 0.007 vs.0.059 ± 0.007 Lo/s), maximalextent of muscle shortening (8.4 ± 1.2 vs. 13.9 ± 2.4%Lo), and peakisometric tension (6.1 ± 0.8 vs. 7.2 ± 1.0 mN/mm2). Alb restored all thesecontractile indexes to baseline values. These findings suggest that MChreversibly increased the number of active actomyosin cross bridgesunder resting conditions, limiting further muscle shortening and activetension development. After the electrically induced contraction,muscles showed a transient phase of decrease in tension below preload.This decrease in tension was unaffected by afterload levels but wassignificantly increased by MCh and reduced by Alb. These findingssuggest that the cross bridges activated before, but not during, theelectrically elicited contraction may modulate the phase of decrease intension below preload, reflecting the active part of resting tension.  相似文献   

5.
Inwardlyrectifying K+ current(IKir) infreshly isolated bovine retinal pigment epithelial (RPE) cells wasstudied in the whole cell recording configuration of the patch-clamptechnique. When cells were dialyzed with pipette solution containing noATP, IKir randown completely in <10 min [half time(t1/2) = 1.9 min]. In contrast, dialysis with 2 mM ATP sustainedIKir for 10 min or more. Rundown was also prevented with 4 mM GTP or ADP. When 0.5 mMATP was used,IKir ran down by~71%. Mg2+ was a criticalcofactor because rundown occurred when the pipette solution contained 4 mM ATP but no Mg2+(t1/2 = 1.8 min).IKir also randown when the pipette solution contained 4 mMMg2+ + 4 mM5'-adenylylimidodiphosphate(t1/2 = 2.7 min)or 4 mM adenosine 5'-O-(3-thiotriphosphate)(t1/2 = 1.9 min),nonhydrolyzable and poorly hydrolyzable ATP analogs, respectively. Weconclude that the sustained activity ofIKirin bovine RPE requires intracellular MgATP and that the underlyingmechanism may involve ATP hydrolysis.

  相似文献   

6.
We used a reconstituted fiber formed when 3T3fibroblasts are grown in collagen to characterize nonmusclecontractility and Ca2+ signaling. Calf serum (CS) andthrombin elicited reversible contractures repeatable for >8 h. CSelicited dose-dependent increases in isometric force; 30% produced thelargest forces of 106 ± 12 µN (n = 30), whichis estimated to be 0.5 mN/mm2 cell cross-sectionalarea. Half times for contraction and relaxation were 4.7 ± 0.3 and 3.1 ± 0.3 min at 37°C. With imposition of constant shortening velocities, force declined with time, yieldingtime-dependent force-velocity relations. Forces at 5 s fit thehyperbolic Hill equation; maximum velocity(Vmax) was 0.035 ± 0.002 Lo/s.Compliance averaged 0.0076 ± 0.0006 Lo/Fo. Disruption of microtubules with nocodazole in a CS-contracted fiber had no net effects on force, Vmax, or stiffness; force increased in 8, butdecreased in 13, fibers. Nocodazole did not affect baselineintracellular Ca2+ concentration([Ca2+]i) but reduced (~30%) the[Ca2+]i response to CS. The force afternocodazole treatment was the primary determinant of stiffness andVmax, suggesting that microtubules were not amajor component of fiber internal mechanical resistance. Cytochalasin Dhad major inhibitory effects on all contractile parameters measured butlittle effect on [Ca2+]i.

  相似文献   

7.
It is generally believed thatcAMP-dependent phosphorylation is the principle mechanism foractivating cystic fibrosis transmembrane conductance regulator (CFTR)Cl channels. However, we showed that activating Gproteins in the sweat duct stimulated CFTR Cl conductance(GCl) in the presence of ATP alone without cAMP. The objective of this study was to test whether the G protein stimulation of CFTR GCl is independent ofprotein kinase A. We activated G proteins and monitored CFTRGCl in basolaterally permeabilized sweat duct.Activating G proteins with guanosine5'-O-(3-thiotriphosphate) (10-100 µM) stimulated CFTRGCl in the presence of 5 mM ATP alone withoutcAMP. G protein activation of CFTR GCl requiredMg2+ and ATP hydrolysis (5'-adenylylimidodiphosphate couldnot substitute for ATP). G protein activation of CFTRGCl was 1) sensitive to inhibition bythe kinase inhibitor staurosporine (1 µM), indicating that theactivation process requires phosphorylation; 2) insensitive to the adenylate cyclase (AC) inhibitors 2',5'-dideoxyadenosine (1 mM)and SQ-22536 (100 µM); and 3) independent ofCa2+, suggesting that Ca2+-dependent proteinkinase C and Ca2+/calmodulin-dependent kinase(s) are notinvolved in the activation process. Activating AC with106 M forskolin plus 106 M IBMX (in thepresence of 5 mM ATP) did not activate CFTR, indicating that cAMPcannot accumulate sufficiently to activate CFTR in permeabilized cells.We concluded that heterotrimeric G proteins activate CFTR GCl endogenously via a cAMP-independent pathwayin this native absorptive epithelium.

  相似文献   

8.
Inorganic phosphate(Pi) accumulates in the fibers of actively working musclewhere it acts at various sites to modulate contraction. To characterizethe role of Pi as a regulator of the sarcoplasmic reticulum(SR) calcium (Ca2+) release channel, we examined the actionof Pi on purified SR Ca2+ release channels,isolated SR vesicles, and skinned skeletal muscle fibers. In singlechannel studies, addition of Pi to the cis chamberincreased single channel open probability (Po;0.079 ± 0.020 in 0 Pi, 0.157 ± 0.034 in 20 mMPi) by decreasing mean channel closed time; mean channelopen times were unaffected. In contrast, the ATP analog,,-methyleneadenosine 5'-triphosphate (AMP-PCP), enhancedPo by increasing single channel open time anddecreasing channel closed time. Pi stimulation of[3H]ryanodine binding by SR vesicles wassimilar at all concentrations of AMP-PCP, suggesting Pi andadenine nucleotides act via independent sites. In skinned musclefibers, 40 mM Pi enhanced Ca2+-inducedCa2+ release, suggesting an in situ stimulation ofthe release channel by high concentrations of Pi. Ourresults support the hypothesis that Pi may be an importantendogenous modulator of the skeletal muscle SR Ca2+ releasechannel under fatiguing conditions in vivo, acting via a mechanismdistinct from adenine nucleotides.

  相似文献   

9.
To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049–C2060, 2001). We incorporated equations for Ca2+ and Mg2+ buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K+ channel and L-type Ca2+ channel, Na+-K+-ATPase, and sarcolemmal and sarcoplasmic Ca2+-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different INa, Ito, IKr, IKs, and IKp channel properties. The results indicate that the ATP-sensitive K+ channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, Pi, total Mg2+, Na+, K+, Ca2+, and pH diastolic levels are normal. The model predicts that only KATP ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the KATP channel opening through metabolic interactions with the endogenous PI cascade (PIP2, PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes. ATP-sensitive K+ channel; creatine and adenylate kinase reactions; phosphatidylinositol phosphates; heart; mathematical model  相似文献   

10.
The myosin heavy chain (MHC) andmyosin light chain (MLC) isoforms in skeletal muscle of Ranapipiens have been well characterized. We measured theforce-velocity (F-V) properties of single intact fast-twitchfibers from R. pipiens that contained MHC types 1 or 2 (MHC1or MHC2) or coexpressed MHC1 and MHC2 isoforms. Velocities weremeasured between two surface markers that spanned most of the fiberlength. MHC and MLC isoform content was quantified after mechanicsanalysis by SDS-PAGE. Maximal shortening velocity(Vmax) and velocity at half-maximal tension(VP 50) increased with percentage of MHC1(%MHC1). Maximal specific tension (Po/CSA, wherePo is isometric tension and CSA is fiber cross-sectional area) and maximal mechanical power (Wmax) alsoincreased with %MHC1. MHC concentration was not significantlycorrelated with %MHC1, indicating that the influence of %MHC1 onPo/CSA and Wmax was due to intrinsicdifferences between MHC isoforms and not to concentration. TheMLC3-to-MLC1 ratio was not significantly correlated withVmax, VP 50,Po/CSA, or Wmax. These data demonstrate the powerful relationship between MHC isoforms and F-V properties of the two most common R. pipiensfiber types.

  相似文献   

11.
A sulfite-dependent ATPase [EC 3.6.1.3 [EC] ] of Thiobacillus thiooxidanswas activated and solubilized by treatment with trypsin [EC3.4.4.4 [EC] ], and purified 84-fold with a 32% recovery. It requiredboth Mg2+ and SO32– for full activity, and its optimumpH was found at 7.5–8.0. Mn2+, Co2+, and Ca2+ could partiallysubstitute for Mg2+, while SeO32– and CrO42– couldpartially substitute for SO32–. The enzyme hydrolyzed ATP and deoxy-ATP most rapidly and otherphosphate esters were poorer substrates. The apparent Km valuefor ATP was 0.33 mM. The enzyme activity was strongly inhibitedby 0.2 mM NaN3 and 10 mM NaF. (Received July 27, 1977; )  相似文献   

12.
Active pyruvate, P1 dikinase in leaf or chloroplast extractsisolated from illuminated leaves was inactivated by incubatingwith ADP. With chloroplast extracts neither ATP nor AMP alonewas effective. Half the maximum rate of inactivation was observedwith about 55 µM ADP. The following evidence supportedthe view that ADP-mediated inactivation had a co-requirementfor low concentrations of ATP [Buchanan (1980) Ann. Rev. PlantPhysiol. 31: 341], adding hexokinase and glucose prevented inactivationby ADP [Feldhaus et al. (1975) Eur. J. Biochem. 57: 197], whenGDP and UDP were added in place of ADP they mediated rapid inactivationonly when ATP was also provided; GTP was not effective. ATPwas apparently optimally effective at about 1 µM or less.The rate of inactivation was approximately proportional to thesquare of extract concentration suggesting dependancy on a factorin the extracts in addition to active enzyme. The involvementof one or more heat labile protein factors was confirmed bytrypsin treatment of extracts. Pyruvate, P1 dikinase inactivatedby treatment with ADP was reactivated by incubating with P1,a property common to the inactive enzyme extracted from darkenedleaves. Thiol/disulphide interconversion was apparently notcritical in the regulation of pyruvate, P1 dikinase. 3Present address: Department of Agricultural Chemistry, Facultyof Agriculture, Nagoya University, Chikusa, Nagoya 464, Japan. (Received September 22, 1980; Accepted December 6, 1980)  相似文献   

13.
The chemomechanicalcoupling mechanism in striated muscle contraction was examined bychanging the nucleotide substrate from ATP to CTP. Maximum shorteningvelocity [extrapolation to zero force from force-velocity relation(Vmax) andslope of slack test plots (V0)], maximumisometric force (Po), power, andthe curvature of the force-velocity curve[a/Po(dimensionless parameter inversely related to the curvature)] weredetermined during maximumCa2+-activated isotoniccontractions of fibers from fast rabbit psoas and slow rat soleusmuscles by using 0.2 mM MgATP, 4 mM MgATP, 4 mM MgCTP, or 10 mM MgCTPas the nucleotide substrate. In addition to a decrease in the maximumCa2+-activated force in both fibertypes, a change from 4 mM ATP to 10 mM CTP resulted in a decrease inVmax in psoasfibers from 3.26 to 1.87 muscle length/s. In soleus fibers,Vmax was reduced from 1.94 to 0.90 muscle length/s by this change in nucleotide. Surprisingly, peak power was unaffected in either fiber type by thechange in nucleotide as the result of a three- to fourfold decrease inthe curvature of the force-velocity relationship. The results areinterpreted in terms of the Huxley model of muscle contraction as anincrease in f1and g1 coupled toa decrease in g2(where f1 is therate of cross-bridge attachment and g1 andg2 are rates ofdetachment) when CTP replaces ATP. This adequately accounts for theobserved changes in Po,a/Po,and Vmax.However, the two-state Huxley model does not explicitly reveal thecross-bridge transitions that determine curvature of the force-velocityrelationship. We hypothesize that a nucleotide-sensitive transitionamong strong-binding cross-bridge states followingPi release, but before the release of the nucleotide diphosphate, underlies the alterations ina/Po reported here.

  相似文献   

14.
We investigatedthe role of the integrin-associated proteins focal adhesion kinase(FAK) and paxillin as mediators of mechanosensitive signal transductionin tracheal smooth muscle. In muscle strips contracted isometricallywith ACh, we observed higher levels of tyrosine phosphorylation of FAKand paxillin at the optimal muscle length(Lo) than atshorter muscle lengths of 0.5 or 0.75 Lo. Paxillinphosphorylation was also length sensitive in muscles activated byK+ depolarization and adjustedrapidly to changes in muscle length imposed after contractileactivation by either ACh or K+depolarization. Ca2+ depletion didnot affect the length sensitivity of paxillin and FAK phosphorylationin muscles activated with ACh, indicating that the mechanotransductionprocess can be mediated by aCa2+-independent pathway. SinceCa2+-depleted muscles do notgenerate significant active tension, this suggests that themechanotransduction mechanism is sensitive to muscle length rather thantension. We conclude that FAK and paxillin participate in anintegrin-mediated mechanotransduction process in tracheal smoothmuscle. We propose that this pathway may initiate alterations in smoothmuscle cell structure and contractility via the remodeling of actinfilaments and/or via the mechanosensitive regulation ofsignaling molecules involved in contractile protein activation.

  相似文献   

15.
In the preceding article[Am. J. Physiol. 274 (Cell Physiol. 43):C1158-C1173, 1998], we describe the development of a kinetic model for the interaction of mitochondrial Ca2+ handlingand electrical activity in the pancreatic -cell. Here we describefurther results of those simulations, focusing on mitochondrialvariables, the rate of respiration, and fluxes of metabolicintermediates as a function of D-glucose concentration. Oursimulations predict relatively smooth increases of O2consumption, adenine nucleotide transport, oxidative phosphorylation,and ATP production by the tricarboxylic acid cycle asD-glucose concentrations are increased from basal to 20 mM.On the other hand, we find that the active fraction of pyruvatedehydrogenase saturates, due to increases in matrix Ca2+,near the onset of bursting electrical activity and that the NADH/NAD+ ratio in the mitochondria increases by roughly anorder of magnitude as glucose concentrations are increased. Themitochondrial ATP/ADP ratio increases by factor of <2 between theD-glucose threshold for bursting and continuousspiking. According to our simulations, relatively small changes inmitochondrial membrane potential (~1 mV) caused by uptake ofCa2+ are sufficient to alter the cytoplasmic ATP/ADP ratioand influence ATP-sensitive K+ channels in the plasmamembrane. In the simulations, these cyclic changes in the mitochondrialmembrane potential are due to synchronization of futile cycle ofCa2+ from the cytoplasm through mitochondria viaCa2+ uniporters and Na+/Ca2+exchange. Our simulations predict steady mitochondrial Ca2+concentrations on the order of 0.1 µM at low glucose concentrations that become oscillatory with an amplitude on the order of 0.5 µMduring bursting. Abrupt increases in mitochondrial Ca2+concentration >5 µM may occur during continuous electricalactivity.

  相似文献   

16.
The effects ofruthenium red (RuR) on contractility were examined in skinned fibers ofguinea pig smooth muscles, where sarcoplasmic reticulum function wasdestroyed by treatment with A-23187. Contractions of skinned fibers ofthe urinary bladder were enhanced by RuR in a concentration-dependentmanner (EC50 = 60 µM at pCa6.0). The magnitude of contraction at pCa 6.0 was increased to 320% ofcontrol by 100 µM RuR. Qualitatively, the same results were obtainedin skinned fibers prepared from the ileal longitudinal smooth musclelayer and mesenteric artery. The maximal contraction induced by pCa 4.5 was not affected significantly by RuR. The enhanced contraction by RuRwas not reversed by the addition of guanosine5'-O-(2-thiodiphosphate) or a peptideinhibitor of protein kinase C [PKC-(1931)]. Theapplication of microcystin, a potent protein phosphatase inhibitor,induced a tonic contraction of skinned smooth muscle at lowCa2+ concentration([Ca2+]; pCa > 8.0).RuR had a dual effect on the microcystin-induced contraction-to-enhancement ratio at low concentrations and suppression at highconcentrations. The relaxation following the decrease in[Ca2+] from pCa 5.0 to>8.0 was significantly slowed down by an addition of RuR.Phosphorylation of the myosin light chain at pCa 6.3 was significantlyincreased by RuR in skinned fibers of the guinea pig ileum. Theseresults indicate that RuR markedly increases theCa2+ sensitivity of thecontractile system, at least in part via inhibition of myosin lightchain phosphatase.  相似文献   

17.
Plasma Membrane H+-ATPase in Guard-Cell Protoplasts from Vicia faba L.   总被引:2,自引:0,他引:2  
The activity of plasma membrane H+-ATPase was measured withmembrane fragments of guard-cell protoplasts isolated from Viciafaba L. ATP hydrolytic activity was slightly inhibited by oligomycinand ammonium molybdate, and markedly inhibited by NO3and vanadate. In the presence of oligomycin, ammonium molybdateand NO3, the ATP-hydrolyzing activity was strongly inhibitedby vanadate. It was also inhibited by diethylstilbestrol (DES),p-chloromercuribenzoic acid (PCMB) and Ca2+, but slightly stimulatedby carbonyl cyanide m-chlorophenylhydrazone (CCCP). The acitivityhad higher specificity for ATP as a substrate than other phosphoricesters such as ADP, AMP, GTP and p-nitrophenylphosphate; theKm was 0.5 mM for ATP. The activity required Mg2+ but was notaffected by K+, and it was maximal around pH 6.8. When guard-cellprotoplasts were used instead of membrane fragments, the ATPaseactivity reached up to 800µmol Pi.(mg Chl)–1.h–1in the presence of lysolecithin. These results indicate thatthe guard cell has a high plasma membrane H+-ATPase activity. (Received December 23, 1986; Accepted April 28, 1987)  相似文献   

18.
Recently the converter domain, anintegral part of the "mechanical element" common to all molecularmotors, was proposed to modulate the kinetic properties ofDrosophila chimeric myosin isoforms. Here we investigatedthe molecular basis of actin filament velocity(Vactin) changes previously observed with thechimeric EMB-IC and IFI-EC myosin proteins [the embryonic body wallmuscle (EMB) and indirect flight muscle isoforms (IFI) with geneticsubstitution of the IFI and EMB converter domains, respectively]. Inthe laser trap assay the IFI and IFI-EC myosins generate the sameunitary step displacement (IFI = 7.3 ± 1.0 nm, IFI-EC = 5.8 ± 0.9 nm; means ± SE). Thus converter-mediateddifferences in the kinetics of strong actin-myosin binding, rather thanthe mechanical capabilities of the protein, must account for theobserved Vactin values. Basal andactin-activated ATPase assays and skinned fiber mechanical experimentsdefinitively support a role for the converter domain in modulating thekinetic properties of the myosin protein. We propose that the converterdomain kinetically couples the Pi and ADP release stepsthat occur during the cross-bridge cycle.

  相似文献   

19.
Cell-free extracts of peanut (Arachis hypogaea L., cv. Shulamit)seeds, incubated with various substrates, synthesized ATP. Significantsynthesis occurred in the presence of AMP + PEP, NADH2 + PEPand NAD + PEP. When the activities were examined in extractsprepared with 0.3 M mannitol, the rates were 0.6, 0.1 and 0.04nmol min–1 mg–1 protein, respectively. The activitiesunder such conditions were linear with time up to 90 min incubationat 30 °C. In the presence of PEP + NADH2 there was a higherspecific activity in extracts from non-dormant seeds than fromdormant seeds. No such difference was found when PEP + AMP orNAD + PEP was used as the substrate. The temperature dependenceof the activity showed a relatively high energy of activation(Ea) for AMP + PEP and a low one if NADH2 + PEP or NAD + PEPwas used as substrate. In buffer extracts of seeds ATP was synthesizedin the presence of the above-mentioned substrate combinationsbut the rate of activity exhibited a lag phase at the earlytime of incubation, after which higher rates of activities (ascompared with mannitol extracts) were obtained. The activitieswere Co+-dependent, with a Km of about 0.7 mM. In the bufferextracts relatively high activities of adenylate kinase (EC2.7.4.3 [EC] (AK) and pyruvate kinase (EC 2.7.1.50 [EC] ) (PK) were found.AK was stimulated by ethephon (ethylene). This effect is temperature-dependentand occurs in both directions: in the presence of ADP (ATP +AMP) as well as if ATP + AMP is used as substrate to synthesizeADP. PK is Co+-dependent, and unaffected by ethephon. Both activitieswere stimulated by malonate. Key words: Adenylate Kinase, Arachis hypogaea, ATP synthesis, Peanut, Pyruvate kinase, Seed  相似文献   

20.
Metabolic control within skeletal muscle is designed to limit ADP accumulation even during conditions where ATP demand is out of balance with ATP synthesis. This is accomplished by the reactions of adenylate kinase (AK; ADP+ADP AMP+ATP) and AMP deaminase (AMP+H2O NH3+IMP), which limit ADP accumulation under these conditions. The purpose of this study was to determine whether AK deficiency (AK–/–) would result in sufficient ADP accumulation to be visible using 31P-NMRS during the high energy demands of frequent in situ tetanic contractions. To do this we examined the high-energy phosphates of the gastrocnemius muscle in the knockout mouse with AK1–/– and wild-type (WT) control muscle over the course of 64 rapid (2/s) isometric tetanic contractions. Near-complete depletion of phosphocreatine was apparent after 16 contractions in both groups. By 40 contractions, ADP was clearly visible in AK1–/– muscle. This transient concentration of the NMR visible free ADP was estimated to be 1.7 mM, and represents the first time free ADP has been directly measured in contracting skeletal muscle. Such an increase in free ADP is severalfold greater than previously thought to occur. This large accumulation of free ADP also represents a significant reduction in energy available from ATP, and has implications on cellular processes that depend on a high yield of energy from ATP such as calcium sequestration. Remarkably, the AK1–/– and WT muscles exhibited similar fatigue profiles. Our findings suggest that skeletal muscle is surprisingly tolerant to a large increase in ADP and by extension, a decline in energy from ATP. muscle energetics; muscle relaxation; magnetic resonance spectroscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号