首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 550 毫秒
1.
Geotrichum candidum was cultivated at the surface of solid model media containing peptone to simulate the composition of Camembert cheese. The surface growth of G. candidum induced the diffusion of substrates from the core to the rind and the diffusion of produced metabolites from the rind to the core. In the range of pH measured during G. candidum growth, constant diffusion coefficients were found for lactate and ammonium, 0.4 and 0.8 cm(2) day(-1), respectively, determined in sterile culture medium. Growth kinetics are described using the Verlhust model and both lactate consumption and ammonium production are considered as partially linked to growth. The experimental diffusion gradients of lactate and ammonium recorded during G. candidum growth have been fitted. The diffusion/reaction model was found to match with experimental data until the end of growth, except with regard to ammonium concentration gradients in the presence of lactate in the medium. Indeed, G. candidum preferentially assimilated peptone over lactate as a carbon source, resulting in an almost cessation of ammonium release before the end of growth. On peptone, it was found that the proton transfer did not account for the ammonium concentration gradients. Indeed, amino acids, being positively charged, are involved in the proton transfer at the beginning of growth. This effect can be neglected in the presence of lactate within the medium, and the sum of both lactate consumption and ammonium release gradients corresponded well to the proton transfer gradients, confirming that both components are responsible for the pH increase observed during the ripening of soft Camembert cheese.  相似文献   

2.
Geotrichum candidum and Penicillium camembertii have been cultivated at the surface of a glutamate, lactate-based medium. Glutamate has been chosen since it is a convenient carbon source for both fungi, in addition to a nitrogen source.The surface growth of both fungi induced the diffusion of substrates from the core to the rind. However, significant substrate concentrations (glutamate and lactate) always remained at the top of the gel, showing the absence of diffusional limitation of growth, in addition to the absence of substrate limitation. An absence of diffusional limitation, when the medium contained peptones instead of glutamate, was also indirectly deduced from the comparison of both media. Indeed, peptones are too complex for a possible identification of diffusional limitation from gradients analysis.An inhibitory effect of pH limited growth: at the end of the linear growth (oxygen limitation), inhibitory pH values were observed at the surface of the medium, even if it was not the case for the mean pH values. Since growth was limited by the alkaline pH at the surface of the gel, to account for this inhibition, an additional term has been introduced in the expression for the partial linking between consumption or production and growth. The diffusion coefficients for glutamate, lactate and ammonium have been also considered. Then, the concentration gradients for glutamate, lactate and ammonium have been calculated (second Fick law) and found to match with the experimental gradients.  相似文献   

3.
In this study the effects of ammonium and lactate on a culture of channel catfish ovary (CCO) cells were examined. We also made investigation on the influence of glutamine, since our previous research revealed that this amino acid stimulated CCO cell growth more than glucose in a concentration-dependent manner. The effect of ammonium in cell culture included the considerable decrease in cell growth rate with eventual growth arrest as well as the retardation of glucose consumption. At ammonium concentrations above 2.5 mM, the cells displayed specific morphological changes. The effect of lactate was different to that of ammonium since the cell growth rate was progressively decreasing with the increase of lactate concentration, whereas the glucose consumption rate remained almost unchanged. Besides that, it was found that lactate was steadily eliminated from the culture medium when its initial concentration was relatively high. The influence of glutamine on CCO cell propagation showed that nutrient requirements of this cell line were mainly dependent on glutamine rather than glucose. The increase in glutamine concentration led to the increase in cell growth rate and consequent ammonia accumulation while the glucose utilization and lactate production were reduced. Without glutamine in culture medium cell growth was arrested. However, the lack of glucose reversed the stimulating effect of glutamine by decreasing cell growth rate and affecting amino acid utilization.  相似文献   

4.
Penicillium nalgiovense is the most widely used starter mold for cured and fermented meat products. The development of a biomass film on the surface of these products prevents a large degree undesirable growth of various fungal contaminants and contributes to the ripening process with production of metabolites. This work presents an attempt to model the growth of P. nalgiovense and to relate it to substrate consumption and product release. Because of the extremely complex nature of the meat product fermentation, submerged culture was employed in a bioreactor system that enabled on-line monitoring, using a meat simulation medium, which contained peptones and lactate as carbon, nitrogen and energy sources. The unstructured model presented is based on a partial association of substrate assimilation and product formation with growth. Experimentally derived values for peptones and lactate were compared with model-derived values and their proportions corresponding to growth associated parts, used for biosynthesis, and non-growth associated parts, used for maintenance. The model was applied for the products ammonia, carbon dioxide and protons. Both peptones and lactate were used mainly for biosynthesis (85 and 80% of the total amounts provided, respectively). Assimilation of lactate and ammonia formation from amino acid metabolism resulted in a proton exchange, which was mainly growth associated. The contribution of the growth associated mechanism to the total proton exchange was estimated to be 75% while the contribution of the non-growth associated mechanism increased during the growth phase and reached a maximum of 25%. For carbon dioxide production, the contribution of a maintenance mechanism was evident at 40 h, while production was growth-associated and remained such even at the end of fermentation at 168 h when growth rate was very low. The partially growth associated model showed good agreement with the experimental data and allows accurate determination of the proportions of substrates or products related to biosynthesis and cell maintenance.  相似文献   

5.
The effect of an additional carbon source, lactate, on Penicillium camembertii growth on glutamate as both carbon and nitrogen sources was examined. Glutamate (and lactate) was present in excess in both media. Throughout the whole culture, similar growth time-courses were recorded on both media, indicating the absence of a lactate effect on growth. During the first part of growth, corresponding to an increasing amount of viable biomass, the rate of glutamate consumption remained high, as well as the related ammonium production, indicating its use as a carbon source in addition to being nitrogen source. The low growth rates recorded during the last part of growth resulted in low glutamate consumption, while lactate consumption continued mainly by a maintenance mechanism for the energy supply. A clear differentiation appeared therefore between the carbon source and the energy source: glutamate was mainly used as C source (and N source) for biosynthesis, while lactate was mainly assimilated for energy supply. Carbon and nitrogen yield examinations confirmed this result. Indeed, the C/N ratio found for P. camembertii cellular material (8.14) was about twice that of glutamate (4.29). From this, about half of the available nitrogen was used for biomass formation during growth on glutamate-lactate based medium, as experimentally confirmed (constant yield nitrogen from biomass on nitrogen from glutamate was found (0.49), while the excess nitrogen was released as ammonium). The constant and close to unit (0.99) yield carbon from CO2 on carbon from lactate, also recorded during growth on glutamate-lactate based medium, confirmed that lactate was mainly used as an energy source.  相似文献   

6.
Summary The effect of ammonium ions in the medium on production of thiostrepton byStreptomyces laurentii was investigated. In batch cultures, the excessive initial concentration of ammonium ions inhibited thiostrepton production. Moderate feeding of ammonia accelerated, however, not only microbial growth but also thiostrepton production. Fed-batch cultures with various feed rates of ammonia and a kinetic study clarified the effect of ammonium ion consumption rate on thiostrepton production. A modified kinetic model is proposed that takes product inhibition and the influence of maximum thiostrepton content into account.  相似文献   

7.
Cultivating Vitis vinifera cell suspensions in a production medium which is characterized by high sucrose and low nitrate concentrations (132 mM and 6.25 mM respectively) repressed growth but enhanced the intracellular accumulation of anthocyanins, especially peonidin 3-glucoside. Increasing the ammonium concentration of the production medium from 2 to 8–16 mM increased growth and decreased the accumulation of anthocyanins and peonidin 3-glucoside specifically. Instead, peonidin 3-p-coumaroylglucoside accumulated. At 24 mM ammonium concentration, growth was inhibited and accumulation of peonidin 3-p-coumaroylglucoside was significant (p<0.05) and represented 42% of total anthocyanins after 12 days of culture compared with 19% in the production medium with 2 mM ammonium.Contribution Number 217.  相似文献   

8.
In order to achieve enhanced cell mass and productivity with less lactate accumulation, a fed-batch culture based on a combined feeding strategy of glucose and galactose was developed. Cell performance was first examined with feeding of galactose alone. While cell growth was improved compared with glucose-feeding culture, cell maintenance was inefficient with rapid lactate depletion and considerable ammonium accumulation. Subsequently, to improve cell maintenance, a combined feeding strategy of glucose and galactose was proposed focusing on optimizing the ratio of glucose to galactose and feeding time. In addition, the compositions of amino acids and vitamins in feeding medium were refined for balanced supply of nutrients. With the combined feeding strategy, the metabolic shift of lactate from production to consumption occurred, but not accompanied by rapid lactate depletion and ammonium production. Furthermore, energy metabolism was more efficient and better utilization of carbon sources was achieved. Compared with the glucose-feeding culture in bioreactor, maximum lactate concentration was reduced by 55%; IVCC and the specific production rate of antibody were increased by 45% and 143%, respectively.  相似文献   

9.
An on-line technique, based on measuring the increase in pressure due to CO2 release in a closed air-tight reactor, was used to evaluate the fermentation of lactate by propionibacteria. The method was applied to batch cultures of Propionibacterium shermanii grown in yeast extract/sodium lactate medium containing lactate as a carbon source under micro-aerophilic conditions. Gas pressure evolution was compared both with substrate consumption and metabolites production and with acidification and growth. Linear relationships were found between gas pressure variation, lactate consumption and propionate and acetate production. The technique also enabled the evaluation of total CO2 produced, by taking account of pressure, oxygen and pH measurements. These results tend to show that this simple and rapid method could be useful to monitor propionic acid bacteria growth.  相似文献   

10.
The possibility that lactate and ammonia accumulation may have less detrimental effect on cell growth than usually admitted is investigated. We report here the isolation of several HL-60 subclones able to proliferate in the presence of 60 mM sodium lactate and 4 mM ammonium chloride, concentrations usually considered to be toxic for cell proliferation. Growth kinetics and final cell densities of these clones in suspension cultures were similar to the HL-60 cell population in control medium as well as in medium containing ammonia and lactate in which control cells were unable to grow. The metabolic pattern of the double-resistant clones revealed that lactate and ammonia formation was inhibited in the presence of lactate and ammonia in the medium, while alanine production and arginine consumption were enhanced irrespective of the medium.  相似文献   

11.
PER.C6(R) cell growth, metabolism, and adenovirus production were studied in head-to-head comparisons in stirred bioreactors under different pH conditions. Cell growth rate was found to be similar in the pH range of 7.1-7.6, while a long lag phase and a slower growth rate were observed at pH 6.8. The specific consumption rates of glucose and glutamine decreased rapidly over time during batch cell growth, as did the specific lactate and ammonium production rates. Cell metabolism in both infected and uninfected cultures was very sensitive to culture pH, resulting in dramatic differences in glucose/glutamine consumption and lactate/ammonium production under different pH conditions. It appeared that glucose metabolism was suppressed at low pH but the efficiency of energy production from glucose was enhanced. Adenovirus infection resulted in profound changes in cell growth and metabolism. Cell growth was largely arrested under all pH conditions, while glucose consumption and lactate production were elevated post virus infection. Virus infection induced a reduction in glutamine consumption at low pH but an increase at high pH. The optimal pH for adenovirus production was found to be 7.3 under the experimental conditions used in the study. Deviations from this optimum resulted in significant reductions of virus productivity. The results indicate that culture pH is a very critical process parameter in PER.C6(R) cell culture and adenovirus production.  相似文献   

12.
Hyenstrand  P.  Burkert  U.  Pettersson  A.  Blomqvist  P. 《Hydrobiologia》2000,435(1-3):91-98
In this study, we evaluated growth responses of the green alga Scenedesmus and the cyanobacterium Synechococcus supplied with inorganic nitrogen in different ways. A competitive situation in which nitrogen was limiting was created in mixed cultures as well as in cultures growing in the same vessel but separated by a permeable dialysis membrane. Supplying inorganic nitrogen in small pulses at a high frequency favoured the cyanobacterium Synechococcus, whereas batch additions favoured the green alga Scenedesmus. When using a large-pulse/low-frequency supply mode, the yield of the green alga was higher when ammonium was added as nitrogen source compared to when nitrate was added. By contrast, the yield of the cyanobacterium was higher in the nitrate regime. However, uptake experiments using unialgal cultures showed that both organisms depleted the medium of ammonium more rapidly than they depleted the medium of nitrate; i.e. the higher yield of the cyanobacterium in the nitrate regime than in the ammonium regime can be attributed to the effects of competition with the green alga. Since nitrate assimilation involves the consumption of reductive power, we suggest that the outcome of competition was governed by the fact that green alga was light limited and therefore better able to compete for ammonium than for nitrate. The results from the laboratory studies are discussed in relation to results from an enclosure experiment performed in Lake Erken, Sweden. In that field experiment, in which additions of both phosphate and ammonium were applied every second day to 350-l enclosures, the green algal biomass increased exponentially during an incubation period of 22 days.  相似文献   

13.
Microalgae cultures are receiving attention because of increasing biotechnological and biomedical production of active biomolecules. We evaluated various fertilizer-based culture media to scale up production of the marine microalga Phaeodactylum tricornutum for production of exocellular polysaccharides (EPS), soluble proteins, and cellular superoxide dismutase (SOD). The standard source of sodium nitrate was the same as that used in the synthetic f/2 culture medium and ammonium nitrate, urea, ammonium sulfate, and calcium nitrate as alternative sources of nitrogen. The maximum production of EPS was achieved in microalgae cells grown in the culture media containing 63 and 23% nitrogen from ammonium sulfate, and also in microalgae cells grown in the culture media containing 3% nitrogen from ammonium nitrate. The maximum production of cellular SOD was achieved in microalgae cells grown in the culture media containing 35 and 26% nitrogen from ammonium sulfate, and in the culture media containing 17% nitrogen from urea. The results suggest that it is possible to use a source of nitrogen, other than sodium nitrate, to scale up growth of P. tricornutum for production of EPS and SOD at reduced costs.  相似文献   

14.
The effects of concentration of amino acids, nitrate, and ammonium on the growth and taxol production in cultures of cell line TY-21 of Taxus yunnanensis were investigated. Addition of 20 different amino acids each at 15–20 mg l–1 to B5 medium significantly improved callus growth but inhibited taxol formation in the cultures. The optimum nitrate concentration was 20–30 mM for both growth and taxol production. Ammonium greatly suppressed growth but strongly promoted taxol formation in the cells when it was the sole inorganic nitrogen in the medium. Culturing the suspension cells in nitrate-containing medium for 15 days and then in a medium in which ammonium was the sole inorganic nitrogen for 7 days increased taxol yield by 104%, reaching up to 28.1 mg l–1.  相似文献   

15.
In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable contribution to the ammonium metabolism of the cells. The glycosylation of the recombinant antibody was influenced by the selection of basal medium and feeds. Differences of up to 50 % in the monogalacto-fucosylated (G1F) and high mannose fraction of the IgG were observed.  相似文献   

16.
Insect cell cultures have been extensively utilised for means of production for heterologous proteins and biopesticides. Spodoptera frugiperda (Sf9) and Trichoplusia ni (High Five™) cell lines have been widely used for the production of recombinant proteins, thus metabolism of these cell lines have been investigated thoroughly over recent years. The Helicoverpa zea cell line has potential use for the production of a biopesticide, specifically the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV). The growth, virus production, nutrient consumption and waste production of this cell line was investigated under serum-free culture conditions, using SF900II and a low cost medium prototype (LCM). The cell growth (growth rates and population doubling time) was comparable in SF900II and LCM, however, lower biomass and cell specific virus yields were obtained in LCM. H. zea cells showed a preference for asparagine over glutamine, similar to the High Five™ cells. Ammonia was accumulated to significantly high levels (16 mM) in SF900II, which is an asparagine and glutamine rich medium. However, given the absence of asparagine and glutamine in the medium (LCM), H. zea cells adapted and grew well in the absence of these substrates and no accumulation of ammonia was observed. The adverse effect of ammonia on H. zea cells is unknown since good production of biologically active HaSNPV was achieved in the presence of high ammonia levels. H. zea cells showed a preference for maltose even given an abundance supply of free glucose. Accumulation of lactate was observed in H. zea cell cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
This article aims to study hydrogen production/consumption in Desulfovibrio (D.) desulfuricans strain New Jersey, a sulfate reducer isolated from a medium undergoing active biocorrosion and to compare its hydrogen metabolism with two other Desulfovibrio species, D. gigas and D. vulgaris Hildenborough. Hydrogen production was followed during the growth of these three bacterial species under different growth conditions: no limitation of sulfate and lactate, sulfate limitation, lactate limitation, pyruvate/sulfate medium and in the presence of molybdate. Hydrogen production/consumption by D. desulfuricans shows a behavior similar to that of D. gigas but a different one from that of D. vulgaris, which produces higher quantities of hydrogen on lactate/sulfate medium. The three species are able to increase the hydrogen production when the sulfate became limiting. Moreover, in a pyruvate/sulfate medium hydrogen production was lower than on lactate/sulfate medium. Hydrogen production by D. desulfuricans in presence of molybdate is extremely high. Hydrogenases are key enzymes on production/consumption of hydrogen in sulfate reducing organisms. The specific activity, number and cellular localization of hydrogenases vary within the three Desulfovibrio species used in this work, which could explain the differences observed on hydrogen utilization.  相似文献   

18.
Growth and lactic acid production by L. delbrueckii was studied in a dialysis culture system and the inhibitory effect of lactate confirmed by removing lactate from the culture medium by dialysis. It has been shown that lactate inhibits growth after the log phase and that the maintenance of low lactate concentrations after this point permits higher specific growth rates and higher maximum cell concentrations. Acid production is also significantly higher in a dialysis culture system. Finally, a modification of the Luedeking-Piret model, incorporating the lactate inhibition effect, is proposed.  相似文献   

19.
Aerobic growth of Shewanella oneidensis MR-1 in minimal lactate medium was studied in batch cultivation. Acetate production was observed in the middle of the exponential growth phase and was enhanced when the dissolved oxygen (DO) concentration was low. Once the lactate was nearly exhausted, S. oneidensis MR-1 used the acetate produced during growth on lactate with a similar biomass yield as lactate. A two-substrate Monod model, with competitive and uncompetitive substrate inhibition, was devised to describe the dependence of biomass growth on lactate, acetate, and oxygen and the acetate growth inhibition across a broad range of concentrations. The parameters estimated for this model indicate interesting growth kinetics: lactate is converted to acetate stoichiometrically regardless of the DO concentration; cells grow well even at low DO levels, presumably due to a very low K(m) for oxygen; cells metabolize acetate (maximum specific growth rate, micro(max,A) of 0.28 h(-1)) as a single carbon source slower than they metabolize lactate (micro(max,L) of 0.47 h(-1)); and growth on acetate is self-inhibiting at a concentration greater than 10 mM. After estimating model parameters to describe growth and metabolism under six different nutrient conditions, the model was able to successfully estimate growth, oxygen and lactate consumption, and acetate production and consumption under entirely different growth conditions.  相似文献   

20.
Phycomyces blakesleeanus sporangiospores responded differently to activation by physical and chemical stimuli. Spores that were physically (heat shock) activated or chemically (ammonium acetate) activated germinated and grew at pH 4.5 with the hexoses glucose, fructose, galactose, andN-acetylglucosamine, and with glycerol and amino acids. Under these conditions, physically activated spores showed a lower, although significant growth with the hexoses fructose, galactose,N-acetylglucosamine and with glycerol. On the other hand, physically activated spores incubated at alkaline pH (pH 7.3) required glucose to germinate; a requirement not observed with chemically activated spores, which showed significant growth in the other hexoses tested. Both physically and chemically activated spores incubated at pH 7.3 were unable to germinate and grow with amino acids and glycerol. These results suggest that there are different targets for activation of the spores by physical and chemical treatments. The levels of the fermentative enzymes alcohol dehydrogenase and lactate dehydrogenase and of the oxidative enzyme NAD+-isocitrate dehydrogenase were higher in cells grown at pH 4.5 in medium containing glucose; however, alcohol dehydrogenase and lactate dehydrogenase appear not to be affected by a change in the pH of the growth medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号