首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长期以来,病毒潜伏库(latent viral reservoir,LVR)的存在严重阻碍了AIDS的有效治疗,LVR无法被人体免疫系统识别,高效抗逆转录病毒疗法(highly active antiretroviral therapy, HAART)对其无效,一旦中断抗病毒治疗,患者会出现快速耐药和病毒血症反弹.截至...  相似文献   

2.
Based on the promising drug resistance profile and potent anti-HIV activity of β-d-3′-azido-2′,3′-dideoxyguanosine, a series of purine modified nucleosides were synthesized by a chemical transglycosylation reaction and evaluated for their antiviral activity, cytotoxicity, and intracellular metabolism. Among the synthesized compounds, several show potent and selective anti-HIV activity in primary lymphocytes.  相似文献   

3.
Synthetic small molecules that promote viral mutagenesis represent a promising new class of antiviral therapeutics. Ribavirin is a broad-spectrum antiviral nucleoside whose antiviral mechanism against RNA viruses likely reflects the ability of this compound to introduce mutations into the viral genome. The mutagenicity of ribavirin results from the incorporation of ribavirin triphosphate opposite both cytidine and uridine in viral RNA. In an effort to identify compounds with mutagenicity greater than that of ribavirin, we synthesized 1-beta-D-ribofuranosyl-3-nitropyrrole (3-NPN) and the corresponding triphosphate (3-NPNTP). These compounds constitute RNA analogues of the known DNA nucleoside 1-(2'-deoxy-beta-D-ribofuranosyl)-3-nitropyrrole. The 3-nitropyrrole pseudobase has been shown to maintain the integrity of DNA duplexes when placed opposite any of the four nucleobases without requiring hydrogen bonding. X-ray crystallography revealed that 3-NPN is structurally similar to ribavirin, and both compounds are substrates for adenosine kinase, an enzyme critical for conversion to the corresponding triphosphate in cells. Whereas ribavirin exhibits antiviral activity against poliovirus in cell culture, 3-NPN lacks this activity. Evaluation of 3-NPNTP utilization by poliovirus RNA-dependent RNA polymerase (RdRP) revealed that 3-NPNTP was not accepted universally. Rather, incorporation was only observed opposite A and U in the template and at a rate 100-fold slower than the rate of incorporation of ribavirin triphosphate. This diminished rate of incorporation into viral RNA likely precludes 3-NPN from functioning as an antiviral agent. These results indicate that hydrogen bonding substituents are critical for efficient incorporation of ribonucleotides into RNA by viral RdRPs, thus providing important considerations for the design of improved mutagenic antiviral nucleosides.  相似文献   

4.
Since its discovery, SUMOylation has emerged as a key post-translational modification involved in the regulation of host-virus interactions. SUMOylation has been associated with the replication of a large number of viruses, either through the direct modification of viral proteins or through the modulation of cellular proteins implicated in antiviral defense. SUMO can affect protein function via covalent or non-covalent binding. There is growing evidence that SUMO regulates several host proteins involved in intrinsic and innate immunity, thereby contributing to the process governing interferon production during viral infection; as well as the interferon-activated Jak/STAT pathway. Unlike the interferon-mediated innate immune response, intrinsic antiviral resistance is mediated by constitutively expressed antiviral proteins (defined as restriction factors), which confer direct viral resistance through a variety of mechanisms. The aim of this review is to evaluate the role of SUMO in intrinsic and innate immunity; highlighting the involvement of the TRIM family proteins, with a specific focus on the mechanism through which SUMO affects i- interferon production upon viral infection, ii-interferon Jak/STAT signaling and biological responses, iii-the relationship between restriction factors and RNA viruses.  相似文献   

5.
Interferon type I comprises a group of major virus-inducible host antiviral factors that control infection with a great number of human and animal viruses. They are ubiquitously expressed cytokines that interfere with virus replication within different cell types by activating a number of host genes and several parallel antiviral pathways. Two major intracellular actors of IFN-I-induced antiviral states are ribonucleic acid-dependent protein kinase and 2'-5'-oligoadenylate synthetases/RNase L, both being induced by IFN-I and activated by viral double stranded ribonucleic acid. In addition, Mx proteins and ribonucleic acid-specific adenosine deaminase have also been implicated in IFN-I-induced antiviral responses to some RNA viruses. Viruses, in turn, have evolved different strategies to escape a control imposed by IFN-I and by IFN-I-induced antiviral factors. The fatal outcome of virus infection as well as the efficiency of IFN-I-based antiviral therapies in its prevention, are determined by complex interactions between viral virulence factors and cellular antiviral IFN-I inducible factors. In the light of these facts and current knowledge on IFN-I involvement in flavivirus infection, I discuss a possible role of IFN-I signalling in resistance to flavivirus infection in a model of congenic mouse strains that express different levels of susceptibility/resistance to common flaviviruses. Specifically, this review emphasizes importance of fully operative 2'-5'-oligoadenylate synthetases/RNase L pathway for the IFN-I-induced stimulation of flavivirus resistance conferred by Flv.  相似文献   

6.
The preparation of a series of novel 6-(beta-D-ribofuranosyl)-2-alkyl/aryl-6H-imidazo[1,2-c]pyrimidin-5-one nucleosides and the 2-nitrile nucleosides, 6-(beta-D-ribofuranosyl)-5-oxo-5,6-dihydro-imidazo[1,2-c]pyrimidine-2-carbonitrile and 2R and 2S isomers of 6-(beta-D-ribofuranosyl)-5-oxo-2,3,5,6-tetrahydro-imidazo[1,2-c]pyrimidine-2-carbonitrile, is described using two synthetic approaches. The nucleoside mimetics described were evaluated against a wide range of viral types and strains in cell culture. With the exception of one nucleoside, which displayed anti-CMV activity at toxic concentrations, none of the compounds showed antiviral activity most likely due to a lack of substrate recognition by viral and/or cellular nucleoside kinases.  相似文献   

7.
NK cell-mediated resistance to viruses is subject to genetic control in humans and mice. Here we used classical and quantitative genetic strategies to examine NK-mediated murine cytomegalovirus (MCMV) control in genealogically related New Zealand white (NZW) and black (NZB) mice. NZW mice display NK cell-dependent MCMV resistance while NZB NK cells fail to limit viral replication after infection. Unlike Ly49H+ NK resistance in C57BL/6 mice, NZW NK-mediated MCMV control was Ly49H-independent. Instead, MCMV resistance in NZW (Cmv2) involves multiple genetic factors. To establish the genetic basis of Cmv2 resistance, we further characterized a major chromosome X-linked resistance locus (DXMit216) responsible for innate MCMV control in NZW × NZB crosses. We found that the DXMit216 locus affects early MCMV control in New Zealand F2 crosses and demonstrate that the NZB-derived DXMit216 allele enhances viral resistance in F2 males. The evolutionary conservation of the DXMit216 region in mice and humans suggests that a Cmv2-related mechanism may affect human antiviral responses. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Abstract

Some 5-substituted ribavirin analogues have a high antiviral and anticancer activity, but their mechanisms of action are obviously not the same as their parent compound. The SAR studies performed on 3 (5)-substituted 1,2,4-triazole nucleosides have shown a high dependency between the structure of the 3 (5)-substituent and the level of antiviral/anticancer activity. The most active substances of the row contain coplanar with the 1,2,4-triazole ring aromatic substituent which is connected by a rigid ethynyl bond. However, the compounds with the trans-vinyl linker also had antiviral activity. We decided to study the antitumor activity of ribavirin analogues with alkyl/aryl vinyl substituents in the 5th position of the 1,2,4-triazole ring. Protected nucleoside analogues with various 5-alkylvinyl substituents were obtained by Horner-Wadsworth-Emmons reaction from the common precursor and converted to the nucleosides. Arylvinyl nucleosides were synthesised according the reported procedures. All compounds did not show significant antiproliferative activity on several tumour cell lines. Coplanar aromatic motif in the 5-substituent for the anticancer activity manifestation was confirmed.  相似文献   

9.
Acyclic nucleosides as antiviral compounds   总被引:2,自引:0,他引:2  
  相似文献   

10.
Abstract

Ribavirin and tiazofurin, two nucleosides of known antiviral activity, have been transformed by previously reported methods to yield several deoxy,epoxy, or dideoxy analogues. The deoxygenated derivatives were evaluated for antiviral activity against a host of DNA and RNA viruses; however, no significant in vitro activity was detected.  相似文献   

11.
Viral infections are the most important health concern nowadays to mankind, which is unexpectedly increasing the health complications and fatality rate worldwide. The recent viral infection outbreak developed a pressing need for small molecules that can be quickly deployed for the control/treatment of re-emerging or new emerging viral infections. Numerous viruses, including the human immunodeficiency virus (HIV), hepatitis, influenza, SARS-CoV-1, SARS-CoV-2, and others, are still challenging due to emerging resistance to known drugs. Therefore, there is always a need to search for new antiviral small molecules that can combat viral infection with new modes of action. This review highlighted recent progress in developing new antiviral molecules based on natural product-inspired scaffolds. Herein, the structure-activity relationship of the FDA-approved drugs along with the molecular docking studies of selected compounds have been discussed against several target proteins. The findings of new small molecules as neuraminidase inhibitors, other than known drug scaffolds, Anti-HIV and SARS-CoV are incorporated in this review paper.  相似文献   

12.
A series of 6-hydrazinopurine 2'-methyl ribonucleosides was synthesized and tested for its inhibitory activity against the hepatitis C virus (HCV). The lack of antiviral activity of these nucleosides was associated with a poor affinity for adenosine kinase, which prompted us to synthesize several of their 5'-monophosphate prodrugs. Some of these prodrugs exhibited more than 1000-fold improvement in anti-HCV activity when compared to their parent nucleosides (EC(50) of 24 nM vs 92 microM for the parent).  相似文献   

13.
We screened a panel of R5X4 and X4 human immunodeficiency virus type 1 (HIV-1) strains for their sensitivities to AMD3100, a small-molecule CXCR4 antagonist that blocks HIV-1 infection via this coreceptor. While no longer under clinical development, AMD3100 is a useful tool with which to probe interactions between the viral envelope (Env) protein and CXCR4 and to identify pathways by which HIV-1 may become resistant to this class of antiviral agents. While infection by most virus strains was completely blocked by AMD3100, we identified several R5X4 and X4 isolates that exhibited plateau effects: as the AMD3100 concentration was increased, virus infection and membrane fusion diminished to variable degrees. Once saturating concentrations of AMD3100 were achieved, further inhibition was not observed, indicating a noncompetitive mode of viral resistance to the drug. The magnitude of the plateau varied depending on the virus isolate, as well as the cell type used, with considerable variation observed when primary human T cells from different human donors were used. Structure-function studies indicated that the V1/V2 region of the R5X4 HIV-1 isolate DH12 was necessary for AMD3100 resistance and could confer this property on two heterologous Env proteins. We conclude that some R5X4 and X4 HIV-1 isolates can utilize the AMD3100-bound conformation of CXCR4, with the efficiency being influenced by both viral and host factors. Baseline resistance to this CXCR4 antagonist could influence the clinical use of such compounds.  相似文献   

14.
15.
Kim J  Hong JH 《Carbohydrate research》2003,338(8):705-710
A series of 2'-deoxyapio-L-furanosyl pyrimidine nucleosides were efficiently synthesized starting from D-lactose via condensation of lactitor acetates with silylated pyrimidine bases under standard Vorbrüggen conditions. Their structures were determined by 1D and 2D NMR spectroscopy. All the synthesized nucleosides were assayed against several viruses such as HIV-1, HBV, HSV-1, HSV-2, and HCMV. However, none of these compounds had any significant antiviral activity at concentrations up to 100 microM.  相似文献   

16.
Several types of novel apio nucleosides were synthesized starting from 1,3-dihydroxyacetone and evaluated for antiviral activity. Among compounds tested, amino substituted apio dideoxynucleosides exhibited anti-HBV activity, while thioapio dideoxynucleosides were found to be active against HIV-1. Apio dideoxydidehydro nucleosides showed moderate to potent anti-HCMV activity, but their bioisosteric thioapio dideoxydidehydro nucleosides did not exhibit any significant antiviral activity.  相似文献   

17.
Several types of novel apio nucleosides were synthesized starting from 1,3-dihydroxyacetone and evaluated for antiviral activity. Among compounds tested, amino substituted apio dideoxynucleosides exhibited anti-HBV activity, while thioapio dideoxynucleosides were found to be active against HIV-1. Apio dideoxydidehydro nucleosides showed moderate to potent anti-HCMV activity, but their bioisosteric thioapio dideoxydidehydro nucleosides did not exhibit any significant antiviral activity.  相似文献   

18.
Since the discovery of 3'-azido-3'deoxthymidine (zidovudine) as an effective antiretroviral agent against human immunodeficiency virus type 1 (HIV-1), drug therapy has been widely used in the treatment of AIDS. To date, new combination therapies have significantly altered the longterm prognosis for HIV-infected patients showing a reduction of plasma viral load, associated with clinical and immunological recovery. Nevertheless, in various circumstances treatment can fail for several reasons, such as patient noncompliance with the therapeutic regimen, suboptimal antiviral drug concentrations, drug pharmacokinetics, and virus resistance to one or more drugs. Virus drug resistance is the most important factor contributing to the failure of antiretroviral therapy. Since some evidence indicates that viral resistance and treatment failure are closely linked, this brief review explores the routine determination of drug resistance and its importance to shed more light on the meaning of mutations correlated to drug resistance.  相似文献   

19.
Cyclopropyl carbocyclic nucleosides have been synthesized from the key intermediate 2 which was converted to the mesylated cyclopropyl methyl alcohol 3. Condensation of compound 3 with various purine and pyrimidine bases gave the desired nucleosides. All synthesized nucleosides were evaluated for antiviral activity and cellular toxicity. Among them adenine 22 and guanine 23 derivatives showed moderate antiviral activity against HIV-1 and HBV. None of the other compounds showed any significant antiviral activities against HIV-1, HBV, HSV-1 and HSV-2 in vitro up to 100 microM.  相似文献   

20.
Recently, beta-L-nucleoside analogues have emerged as a new class of sugar modified nucleosides with potential antiviral and/or antitumoral activity. As a part of our ongoing research on this topic, we decided to synthesize 5-CF3-beta-L-dUrd (7), the hitherto unknown L-enantiomer of Trifluridine, an antiherpetic drug approved by FDA but only used in topical applications due to concomitant cytotoxicity. 5-CF3-beta-L-dUrd (7) as well as some other related L-nucleoside derivatives were stereospecifically prepared and tested in vitro against viral (HSV-1 and HSV-2) and human thymidine kinases (TK).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号