首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brush cells are specialised epithelial cells scattered throughout the simple epithelia of the respiratory and alimentary tracts. These cells have been suggested to serve a still unknown receptive function and use nitric oxide as a gaseous messenger molecule. At the light microscope level, brush cells can be identified by antibodies against the actin filament crosslinking proteins villin and fimbrin that not only stain the apical tuft of microvilli and their rootlets, but also label projections emanating from the basolateral surface of these cells. Since brush cells contain numerous intermediate filaments and microtubules and display a complicated basolateral cell morphology, we tested in this study whether antibodies against cytokeratin, tubulin and components of the membrane cytoskeleton might provide further markers for these cells at the light microscope level. Here we show that brush cells (identified by villin antibodies) can be discriminated from the neighbouring simple epithelium of the stomach, pancreatic duct and duodenum by particularly strong immunoreactivity with antibodies specific for cytokeratin 18. Tubulin antibodies reacted strongly with the upper half of brush cells in a pattern not observed in the other epithelial cells of these tissues, including enteroendocrine cells of the duodenum. Ankyrin, a protein that links the spectrin-based membrane cytoskeleton to integral proteins of the plasma membrane was revealed as a third cytoskeleton-associated protein, prominently expressed in brush cells where ankyrin is restricted to the basolateral membrane domain. The apparently high concentration of cytokeratin 18, tubulin and ankyrin in brush cells suggests that these cytoskeletal proteins might play a role in the mechanical stability and polarised organisation of these putative receptor cells.Dedicated to Prof. Dr. Drs. h.c. Andreas Oksche on the occasion of his 70th birthday  相似文献   

2.
Neurofilaments are the principal intermediate filament type expressed by neurons. They are formed by the co-assembly of three subunits: NF-L, NF-M, and NF-H. Peripherin is another intermediate filament protein expressed mostly in neurons of the peripheral nervous system. In contrast to neurofilaments, peripherin can self-assemble to establish an intermediate filament network in cultured cells. The co-expression of neurofilaments and peripherin is found mainly during development and regeneration. We used SW13 cells devoid of endogenous cytoplasmic intermediate filaments to assess the exact assembly characteristics of peripherin with each neurofilament subunit. Our results demonstrate that peripherin can assemble with NF-L. In contrast, the co-expression of peripherin with the large neurofilament subunits interferes with peripherin assembly. These results confirm the existence of interactions between peripherin and neurofilaments in physiological conditions. Moreover, they suggest that perturbations in the stoichiometry of neurofilaments can have an impact on peripherin assembly in vivo.  相似文献   

3.
By two-dimensional gel electrophoresis of proteins insoluble in detergents and high-salt buffer and immunofluorescence microscopy with a panel of polypeptide-specific antibodies to proteins of intermediate filaments (IF) and desmosomes, we have characterized the cytoskeletons of normal human thyroid gland, several kinds of benign lesion (goiter, Hashimoto's and Graves' diseases, adenomas), and the major thyroid carcinomas (follicular, papillary, medullary, and anaplastic). In all these tissues, desmoplakins and cytokeratins 7, 8, 18, and 19 were identified. While cytokeratins 8 and 18 occurred in all epithelial cells and cytokeratin 7 was also rather widespread, cytokeratin 19 occurred in amounts variable between the different types of tissues and in normal thyroid gland was restricted to certain clusters of follicular epithelial cells. Of all samples studied, in none did we detect cytokeratins commonly associated with stratified epithelia such as cytokeratins 4-6, 10, and 13-17, indicating that these are infrequent, if at all present, in such tissues. Coexpression of cytokeratins with vimentin appears to occur constitutively in follicular epithelial cells of normal thyroid gland and is also frequent in the diverse carcinomas, though to various degrees. Medullary carcinomas are exceptional, not only because they express neuroendocrine markers, but also because they coexpress combinations of cytokeratin IFs with neurofilaments and/or vimentin IFs in some cases, but not all. The results are discussed in relation to states of cell differentiation in normal and diseased thyroid gland and with respect to their value in tumor diagnosis.  相似文献   

4.
Ten nephroblastomas were investigated by antibodies to intermediate filaments. In seven cases, which in light microscopy were characterized by the presence of blastema and tubules, immunofluorescence microscopy with IF-specific antibodies reveals expression of cytokeratin and vimentin in blastema cells, while tubules were only labelled by the cytokeratin antibodies. This result was independent of whether the conventional cytokeratin antibody or monoclonal antibodies specific for cytokeratin 18 were used. Stroma cells were vimentin-positive. In two cases nephroblastomas were undifferentiated and also lacked tubuli formation. In both these tumors blastema cells were vimentin-positive and cytokeratin-negative. Finally one case of clear cell sarcoma of the kidney could only be labelled by the vimentin antibody. Thus antibodies to intermediate filaments seem to be useful tools to distinguish nephroblastomas from neuroblastomas or rhabdomyosarcomas, especially in cases of metastasis.  相似文献   

5.
Cytokeratin 18 is an M-cell marker in porcine Peyer's patches   总被引:8,自引:0,他引:8  
The intermediate filaments of the dome epithelium of porcine Peyer's patches were studied by immunohistochemistry. The labelling patterns of monospecific antibodies directed against cytokeratins 8, 18 and 19 differed considerably. About 40% of the dome epithelial cells were intensely labelled by three different anti-cytokeratin 18 antibodies, indicating that large amounts of cytokeratin 18 are present in these cells. In order to verify that these cytokeratin-18-immunoreactive cells were M-cells, uptake studies using fluorescein-labelled yeast particles were performed. Numerous yeast particles were found exclusively in dome epithelial cells that were highly positive for cytokeratin 18, thus representing M-cells. In contrast, the content of cytokeratin 19 in M-cells was lower than that in neighbouring enterocytes. The labelling intensity of cytokeratin 8 did not differ between M-cells and enterocytes. In addition, the absence of vimentin and desmin from the dome epithelium of porcine Peyer's patches was demonstrated. The results show (1) that porcine M-cells differ from enterocytes in the composition of their cytoskeleton, (2) that cytokeratin 18 is a useful marker for detecting porcine M-cells and (3) that this marker directly correlas with M-cell function.  相似文献   

6.
We studied the molecular associations between peripherin (a neuronal, type III intermediate filament subunit) and nuclear lamins. We show here that isolated peripherin binds selectively to mammalian lamin B under in vitro conditions. We further demonstrate that a synthetic peptide, representing the proximal part of peripherin's tail domain (P1), also associates with mammalian lamin B in a saturable, cooperative, and specific fashion. Laboratory animals immunized with P1 spontaneously develop idiotypic and anti-idiotypic antibodies recognizing peripherin and lamin B, respectively. These data provide essentially in vivo evidence that lamin B represents a constitutive nuclear "receptor" site for the tail domains of peripherin intermediate filaments.  相似文献   

7.
The present study was designed to characterize the expression and distribution of intermediate filaments (IFs) in the diverse cellular elements of inner-ear epithelium in guinea pig and man. Using immunofluorescence microscopy with a battery of IF-specific monoclonal antibodies, we show that the epithelium of the otocyst expresses cytokeratin (CK) polypeptides typical of simple epithelia. Cells in the early otic ganglion were also positively labelled for cytokeratins, suggesting that they are of otocystic epithelial origin. Cytokeratin distribution was largely homogeneous in the early cochlear duct as the epithelium differentiated, differences in the distribution of cytokeratin between the various cell types became detectable. Characteristically, cochlear hair cells became devoid of cytokeratin labelling, and remained unlabelled with antibodies specific for all other IF classes. The neural tissue of the inner ear was also devoid of cytokeratins and was typically positive for neurofilaments. Vimentin IFs were abundant in the mesenchymal tissues around the membranous labyrinth. Desmin and glial fibrillary acidic protein were not detectable in the cochlea. The apparent absence of all IFs from the cochlear hair cells in both guinea pig and man, as revealed by immunofluorescence and electron microscopy, and the possible significance of their absence for cochlear physiology, are discussed.  相似文献   

8.
Intermediate filaments are one of the three major cytoskeletons. Some roles of intermediate filaments in cellular functions have emerged based on various diseases associated with mutations of cytokeratins. However, the precise functions of intermediate filament are still unclear. To resolve this, we manipulated intermediate filaments of cultured cells by expressing a mutant cytokeratin. Arginine 89 of cytokeratin18 plays an important role in intermediate filament assembly. The expression of green fluorescent protein-tagged cytokeratin18 arg89cys induced aggregations and loss of the intermediate filament network composed of cytokeratins in liver-derived epithelial cells, Huh7 and OUMS29, but only induced the formation of cytokeratin aggregates and did not affect the intermediate filament network of endogenous vimentin in HEK293. The expression of this mutant affected the distribution of Golgi apparatus and the reassembly of Golgi apparatus after perturbations by nocodazole or brefeldin A in both Huh7 and OUMS29, but not in HEK293. Our data show that loss of the original intermediate filament network, but not the existence of cytokeratin aggregates, induces redistribution of the Golgi apparatus. The original intact intermediate filament network is necessary for the organization of Golgi apparatus.  相似文献   

9.
Alveoli of the rat lung are lined by three different cell types, the flat type I cells and the cuboidal type II and type III cells. Type III cells differ from type II cells by the presence of an apical tuft of microvilli and the absence of lamellar type secretory granules. In the present study we show by double immunolabelling that type III cells of the rat lung can be identified at the light-and electron microscope level by antibodies against both cytokeratin 18 and the actin-crosslinking protein villin. At the ultrastructural level, microvilli and their rootlets in the apical cytoplasm were labelled by the anti-villin antibodies, whereas a monoclonal antibody against cytokeratin 18 (Ks18.04) labelled bundles of intermediate filaments. In conclusion, antibodies against villin and certain monoclonal antibodies specific for cytokeratin 18 can be used as tools for selective visualization of type III cells in the rat lung.  相似文献   

10.
Murine F9 embryonal carcinoma cells exposed to retinoic acid and dibutyryl cyclic AMP gradually arborize and acquire a neuron-like morphology in monolayer culture. Whether F9 cells can be induced to differentiate into cells with features specific to neural cells is controversial. We analyzed the intermediate filament content and pericellular matrix proteins of F9 cells after exposing them to retinoic acid, dibutyryl cyclic AMP, and nerve growth factor. In long-term cultures, a great majority of the cells appeared neuron-like, but showed intra- and pericellular laminin and type IV collagen, and frequently cytokeratin filaments as well. Several monoclonal antibodies to neurofilaments did not react with these cells in immunofluorescence or immunoblotting, though they recognize either all or individual mouse neurofilament triplet proteins. Polyclonal antibodies to neurofilament proteins gave a diffuse, nonfibrillar, vinblastine-resistant fluorescence in the morphologically neuron-like cells, but in immunoblotting failed to reveal polypeptides compatible with neurofilament triplet proteins. In long-term cultures, most of the cells appeared to have partially or totally lost the intermediate filaments. This was confirmed with anti-IFA antibodies which normally react with all intermediate filament proteins. The F9-derived cells did not respond to nerve growth factor in any detectable way. We conclude that the morphologically neuron-like derivatives of F9 cells display characteristics of modified parietal endoderm-like cells and do not show unequivocal features of neural cells.  相似文献   

11.
The expression patterns of intermediate filament proteins in fetal and normal or nonpathological adult human lung tissues are described using (chain-specific) monoclonal antibodies. In early stages of development (9-10 weeks and 25 weeks of gestation) only so-called simple cytokeratins such as cytokeratins 7 (minor amounts). 8, 18 and 19 are detected in bronchial epithelial cells. At later stages of development, the cytokeratin expression patterns become more complex. The number of bronchial cells positive for cytokeratin 7 increases, but basal cells in the bronchial epithelium remain negative. These latter cells show, however, expression of cytokeratin 14 in the third trimester of gestation. Developing alveolar epithelial cells express cytokeratins 7, 8, 18 and 19. In adult human bronchial epithelium cytokeratins 4 (varying amounts), 7, 8, 13 (minor amounts), 14, 18 and 19 can be detected, with the main expression of cytokeratins 7, 8, and 18 in columnar cells and the main expression of cytokeratin 14 in basal cells. Vimentin is detected in all mesenchymal tissues. In addition, fetal lung expresses vimentin in bronchial epithelium, however, to a lesser extent with increasing age, resulting in the expression of vimentin in only few scattered bronchial cells at birth. Also in adult bronchial epithelium the expression of vimentin is noticed in part of the basal and columnar epithelial cells. Desmin filaments, present in smooth muscle cells of the lung, appear to alter their protein structure with age. In early stages of development smooth muscle cells surrounding blood vessels are partly reactive with some cytokeratin antibodies and with a polyclonal desmin antibody. At week 9-10 and week 25 of gestation a monoclonal antibody to desmin, however, is not reactive with blood vessel smooth muscle cells but is only reactive with smooth muscle cells surrounding bronchi. With increasing age the reactivity of cytokeratin antibodies with smooth muscle cells in blood vessels decreases, while the reactivity with the monoclonal desmin antibody increases. Our results show that during differentiation profound changes in the intermediate filament expression patterns occur in the different cell types of the developing lung.  相似文献   

12.
We have demonstrated a differential association between two types of spectrin, from erythrocytes and brain, with two types of intermediate filaments, vimentin filaments and neurofilaments. Electron microscopy showed that erythrocyte spectrin promoted the binding of vimentin filaments to red cell inside-out vesicles via lateral associations with the filaments. In vitro binding studies showed that the association of spectrin with vimentin filaments was apparently saturable, increased with temperature, and could be prevented by heat denaturation of the spectrin. Comparisons were made between erythrocyte and brain spectrin binding to both vimentin filaments and neurofilaments. We found that vimentin filaments bound more erythrocyte spectrin than brain spectrin, while neurofilaments bound more brain spectrin than erythrocyte spectrin. Our results show that both erythroid and nonerythroid spectrins are capable of binding to intermediate filaments and that such associations may be characterized by differential affinities of the various types of spectrin with the several classes of intermediate filaments present in cells. Our results also suggest a role for both erythroid and nonerythroid spectrins in mediating the association of intermediate filaments with plasma membranes or other cytoskeletal elements.  相似文献   

13.
The cytoskeletons of various human neuroendocrine (NE) tumors were analyzed immunohistochemically using antibodies against intermediate-filament (IF) proteins as well as by two-dimensional gel electrophoresis of proteins from microdissected tissue samples. All of the tumors studied were found to contain cytokeratin filaments and are therefore referred to as 'NE tumors of the epithelial type'. In addition, neurofilaments were found in most cutaneous and some pulmonary NE tumors, as well as in medullary carcinomas of the thyroid and in pancreatic islet cell tumors. The neurofilament staining was frequently concentrated in cytoplasmic IF aggregates. Gel-electrophoretic analyses showed that all NE tumors examined synthesize 'simple epithelium-type' cytokeratin polypeptides, cytokeratins nos. 8 and 18 being the most prominent ones, whereas cytokeratin no. 19 was found in variable and usually minor amounts. A new cytoskeletal protein, designated IT protein, with a relative molecular weight of 46,000 and an isoelectric pH value of approximately 6.1 (in 9.5 M urea) was detected in all 9 cases of cutaneous NE tumors ('Merkel-cell carcinomas'), including 2 lymph-node metastases, but was not found in any of the 17 cases of pulmonary NE tumors. In addition, 2 medullary carcinomas of the thyroid, 2 islet cell tumors of the pancreas, and 1 intestinal carcinoid tumor also seemed to lack this protein. A protein indistinguishable from IT protein by electrophoresis and tryptic peptide mapping was found in cytoskeletal preparations of mucosal cells of human intestine and in cultured human colon carcinoma cells of line HT-29. A possible relationship between IT protein and the type-I subfamily of cytokeratin polypeptides is discussed. Our study shows that the co-expression of cytokeratin filaments and neurofilaments may provide a criterion which is useful for the recognition of some NE tumors but which does not distinguish between NE tumors of different types and origins. In contrast, IT protein seems to be present specifically in cutaneous NE tumors, but absent in pulmonary NE tumors. The implications of these findings for the elucidation of the histogenesis of cutaneous NE tumors and for the histopathological differential diagnosis of NE tumors of cutaneous and pulmonary origin are discussed.  相似文献   

14.
An adrenal tumor-derived cell line (PC12W) cultured in the presence of nerve growth factor exhibited a spindle-shaped cell morphology resembling neuronal cells. The shape of these cells can be specifically changed in vitamin A-depleted medium supplemented with retinoic acid. Retinoic acid promoted an epithelial-like cell morphology except for occasional neuronal processes. These morphological results were correlated with differential expression of intermediate filaments at the mRNA and protein levels in these cells. Retinoic acid suppressed the synthesis of peripherin, an intermediate filament protein predominantly found in peripheral nerve cells, but a high level of simple keratins, normally found in simple epithelial cells, was present in retinoic acid-treated PC12 cells. The neurofilaments typically expressed in neurons remained virtually unaffected under the same conditions. In contrast, nerve growth factor induced the production of neurofilaments, but suppressed the synthesis of simple keratins. Since intermediate filament expression is known to be tissue-specific, these changes in expression together with the cell morphology changes are consistent with PC12 cells undergoing an epithelial-like differentiation in the presence of retinoic acid and a neuronal-like differentiation in the presence of nerve growth factor. These results suggest that retinoic acid and nerve growth factor are both effective regulators of PC12 cell differentiation but stimulate opposing pathways.  相似文献   

15.
Immunofluorescence microscopy has been used to follow the rearrangement of intermediate-sized filaments during mitosis in rat kangaroo PtK2 cells. These epithelial cells express two different intermediate filament systems: the keratin-related tonofilament-like arrays typical of epithelial cells, and the vimentin-type filaments characteristic of mesenchymal cells in vivo, and of many established cell lines. The two filament systems do not appear to depolymerize extensively during mitosis, but show differences in their organization and display which may indicate different functions. The most striking rearrangements have been seen with the vimentin filaments, and in particular in prometaphase a transient cage-like structure of vimentin fibers surrounding the developing spindle is formed. In metaphase, this cage disappears, and vimentin fibers are found in an elliptical band surrounding the chromosomes and the interzone. In telophase, these bands separate, usually breaking first on the side closest to where the cleavage furrow has started to form. Double label experiments with tubulin and vimentin antibodies have indicated that the microtubules and the chromosomes are contained within the thick crescents of vimentin filaments and suggest that the vimentin intermediate filaments may be involved in the orientation of the spindle and/or the chromosomes during mitosis. In contrast, extensive arrays of cytokeratin filaments are present throughout mitosis on the substrate-attached side of the cell and also in other cellular areas, although they are usually not present in the spindle region. Thus the cytokeratin filaments probably continue to play a cytoskeletal role during mitosis and may be responsible for the flat shape that certain epithelial cells such as PtK2 cells continue to maintain during mitosis.  相似文献   

16.
17.
The cytokeratin intermediate filaments have a relevant role in the proliferation and differentiation processes of epithelial cells. To provide information about the role of K8 cytokeratin during the auditory receptor differentiation, two groups of adult mice were used: TGK8-4 transgenic and control animals. The TGK8-4 transgenic mice contained 12 kb of K8 human cytokeratin (HK8) locus (Casanova et al., 1995, 1999). The functional activity of the auditory receptor was analyzed by auditory thresholds. Morphological studies demonstrate that the auditory receptors of the TGK8-4 transgenic mice are highly immature. Immunocytochemical studies were made by using two monoclonal antibodies: CAM 5-2 (recognizing K8 human cytokeratin) and Troma-1 (recognizing both mouse and human K8 cytokeratin). These demonstrated significant differences between the auditory receptors of the transgenic mice and the control mice. These functional and morphological differences clearly suggest that K8 cytokeratin has a relevant role during the differentiation and tridimensional organization of the sensory and the supporting cells of the auditory receptor.  相似文献   

18.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11--20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to--and specific for--epithelial cells; vimentin filaments are seen--at this stage of embryogenesis--only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structurees provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

19.
Merkel cells are special neurosecretory cells which, in adult human skin, are usually very scarce. By immunofluorescence microscopy using antibodies to human cytokeratin polypeptide no. 18, we localized distinct non-keratinocyte cells in the glandular ridges of human fetal and adult plantar epidermis. Using electron and immunofluorescence microscopy, these cells were identified as Merkel cells containing typical neurosecretory granules as well as bundles of intermediate-sized filaments and desmosomes. Two-dimensional gel electrophoresis of the cytoskeletal fractions of microdissected epidermal preparations highly enriched in Merkel cells indicated the presence of cytokeratin polypeptides nos. 8, 18 and 19 which are typical of diverse simple epithelia of the human body. Double immunofluorescence microscopy showed that these human Merkel cells contain neither neurofilaments nor vimentin filaments. In human fetuses of 18-24 weeks of age, conspicuously high concentrations of Merkel cells, reaching a density of approximately 1,700 Merkel cells/mm2 skin, were found in the glandular ridges of plantar skin. The concentration decreased considerably at newborn and adult stages. Thin cell processes (up to 20 microns long) were observed in many fetal epidermal Merkel cells. In addition, we detected isolated Merkel cells deeper in the dermis (i.e. at distances of, at most, 100 microns from the epidermis) in fetal and newborn plantar skin. Our results show that Merkel cells are true epithelial cells which, however, differ profoundly from epidermal keratinocytes in their cytokeratin expression. The findings are discussed in relation to the much disputed question of the origin of Merkel cells. The present data speak against the immigration of Merkel cells from the neural crest, but rather suggest that they originate from epithelial cells of the skin, although most probably not from differentiated keratinocytes.  相似文献   

20.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11–20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to – and specific for – epithelial cells; vimentin filaments are seen – at this stage of embryogenesis – only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structures provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号