首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indole-3-butyric acid (IBA) is an endogenous auxin that acts in Arabidopsis primarily via its conversion to the principal auxin indole-3-acetic acid (IAA). Genetic and biochemical evidence indicates that this conversion is similar to peroxisomal fatty acid β-oxidation, but the specific enzymes catalyzing IBA β-oxidation have not been identified. We identified an IBA-response mutant (ibr3) with decreased responses to the inhibitory effects of IBA on root elongation or the stimulatory effects of IBA on lateral root formation. However, ibr3 mutants respond normally to other forms of auxin, including IAA. The mutant seedlings germinate and develop normally, even in the absence of sucrose, suggesting that fatty acid β-oxidation is unaffected. Additionally, double mutants between ibr3 and acx3, which is defective in an acyl-CoA oxidase acting in fatty acid β-oxidation, have enhanced IBA resistance, consistent with a distinct role for IBR3. Positional cloning revealed that IBR3 encodes a putative acyl-CoA dehydrogenase with a consensus peroxisomal targeting signal. Based on the singular defect of this mutant in responding to IBA, we propose that IBR3 may act directly in the oxidation of IBA to IAA. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

2.
《遗传学报》2020,47(3):157-165
Indole-3-acetamide (IAM) is the first confirmed auxin biosynthetic intermediate in some plant pathogenic bacteria. Exogenously applied IAM or production of IAM by overexpressing the bacterial iaaM gene in Arabidopsis causes auxin overproduction phenotypes. However, it is still inconclusive whether plants use IAM as a key precursor for auxin biosynthesis. Herein, we reported the isolation IAM HYDROLASE 1 (IAMH1) gene in Arabidopsis from a forward genetic screen for IAM-insensitive mutants that display normal auxin sensitivities. IAMH1 has a close homolog named IAMH2 that is located right next to IAMH1 on chromosome IV in Arabidopsis. We generated iamh1 iamh2 double mutants using our CRISPR/Cas9 gene editing technology. We showed that disruption of the IAMH genes rendered Arabidopsis plants resistant to IAM treatments and also suppressed the iaaM overexpression phenotypes, suggesting that IAMH1 and IAMH2 are the main enzymes responsible for converting IAM into indole-3-acetic acid (IAA) in Arabidopsis. The iamh double mutants did not display obvious developmental defects, indicating that IAM does not play a major role in auxin biosynthesis under normal growth conditions. Our findings provide a solid foundation for clarifying the roles of IAM in auxin biosynthesis and plant development.  相似文献   

3.
 The peroxisome targeting signal (PTS) required for import of the rat acyl-CoA oxidase (AOX; EC 1.3.3.6) and the Candida tropicalis multifunctional protein (MFP) in plant peroxisomes was assessed in transgenic Arabidopsis thaliana (L.) Heynh. The native rat AOX accumulated in peroxisomes in A. thaliana cotyledons and targeting was dependent on the presence of the C-terminal tripeptide S-K-L. In contrast, the native C. tropicalis MFP, containing the consensus PTS sequence A-K-I was not targeted to plant peroxisomes. Modification of the carboxy terminus to the S-K-L tripeptide also failed to deliver the MFP to peroxisomes while addition of the last 34 amino acids of the Brassica napus isocitrate lyase, containing the terminal tripeptide S-R-M, enabled import of the fusion protein into peroxisomes. These results underline the influence of the amino acids adjacent to the terminal tripeptide of the C. tropicalis MFP on peroxisomal targeting, even in the context of a protein having a consensus PTS sequence S-K-L. Received: 19 July 1999 / Accepted: 19 February 2000  相似文献   

4.
 The Arabidopsis thaliana genome has four nitrilase (nitrile aminohydrolase, EC 3.5.5.1) genes (NIT1 to NIT4). These nitrilases catalyze hydrolysis of indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). Growth of A. thaliana is inhibited by IAN probably due to hydrolysis of IAN to IAA, while the tobacco (Nicotiana tabacum) genome has only NIT4 homologs and is resistant to IAN. In this study, we introduced A. thaliana NIT1 to NIT4 into tobacco. Introduction of NIT1, NIT2 or NIT3 into tobacco conferred growth inhibition by IAN. NIT2 transgenic plants were highly sensitive to IAN, and NIT1 and NIT3 transgenic plants were moderately sensitive. On the other hand, NIT4 transgenic plants were less sensitive to IAN, although some morphological changes in the roots were observed as the wild-type tobacco. These findings suggest that the ability of transgenic tobacco to convert IAN to IAA in vivo is markedly different among transgenes of NIT1 to NIT4. Received: 22 November 1999 / Revision received: 28 January 2000 / Accepted: 4 February 2000  相似文献   

5.
Peroxisomes contain enzymes catalyzing the β-oxidation of fatty acids, which have been purified and partially characterized. Hypolipidemic drugs, including clofibrate, cause a marked proliferation of peroxisomes and a striking increase in the activity of their β-oxidation system. We have compared by sodium dodecyl sulfate—polyacrylamide gel electrophoresis the polypeptide patterns of normal and clofibrate-induced peroxisomes and the purified β-oxidation enzymes. The data allow a tentative identification of the β-oxidation enzymes among the peroxisomal polypeptides; these enzymes constitute only a small part of the protein of normal peroxisomes. A subset of peroxisomal polypeptides, including the β-oxidation enzymes, is preferentially increased by clofibrate.  相似文献   

6.
7.
8.
To investigate novel pathways involved in auxin biosynthesis, transport, metabolism, and response, we have developed a high-throughput screen for indole-3-acetic acid (IAA) levels. Historically, the quantitative analysis of IAA has been a cumbersome and time-consuming process that does not lend itself to the screening of large numbers of samples. The method described here can be performed with or without an automated liquid handler and involves purification solely by solid-phase extraction in a 96-well format, allowing the analysis of up to 96 samples per day. In preparation for quantitative analysis by selected ion monitoring-gas chromatography-mass spectrometry, the carboxylic acid moiety of IAA is derivatized by methylation. The derivatization of the IAA described here was also done in a 96-well format in which up to 96 samples can be methylated at once, minimizing the handling of the toxic reagent, diazomethane. To this end, we have designed a custom diazomethane generator that can safely withstand high flow and accommodate larger volumes. The method for IAA analysis is robust and accurate over a range of plant tissue weights and can be used to screen for and quantify other indolic auxins and compounds including indole-3-butyric acid, 4-chloro-indole-3-acetic acid, and indole-3-propionic acid.  相似文献   

9.
1-Aminocyclopropane-1-carboxylate (ACC) synthase (ACS; EC 4.4.1.14) is the key regulatory enzyme of the ethylene biosynthetic pathway and is encoded by a multigene family in Arabidopsis thaliana, tomato, mung bean and other plants. Southern blot analysis revealed the existence of at least five ACS genes in white lupin (Lupinus albus L.) genome. Four complete and one partial sequences representing different ACS genes were cloned from the lupin genomic library. The levels of expression of two of the genes, LA-ACS1 and LA-ACS3, were found to increase after hypocotyl wounding. Apparently, these two genes were up-regulated by exogenous IAA treatment of seedlings. The LA-ACS3 mRNA levels were also elevated in the apical part of hypocotyl, which is reported to contain a high endogenous auxin concentration. This gene may be involved in the auxin- and ethylene-controlled apical hook formation. The expression of the LA-ACS4 gene was found to be almost undetectable. This gene may represent a “silent” twin of LA-ACS5 as these two genes share a considerable level of homology in coding and non-coding regions. The LA-ACS5 mRNA is strongly up-regulated in the embryonic axis of germinating seeds at the time of radicle emergence, and was also found in roots and hypocotyls of lupin seedlings. Received: 19 July 1999 / Accepted: 3 March 2000  相似文献   

10.
Müller A  Weiler EW 《Planta》2000,211(6):855-863
 The tryptophan auxotroph mutant trp3-1 of Arabidopsis thaliana (L.) Heynh., despite having reduced levels of l-tryptophan, accumulates the tryptophan-derived glucosinolate, glucobrassicin and, thus, does not appear to be tryptophan-limited. However, due to the block in tryptophan synthase, the mutant hyperaccumulates the precursor indole-3-glycerophosphate (up to 10 mg per g FW). Instability of indole-3-glycerophosphate leads to release of indole-3-acetic acid (IAA) from this metabolite during standard workup of samples for determination of conjugated IAA. The apparent increase in “conjugated IAA” in trp3-1 mutant plants can be traced back entirely to indole-3-glycerophosphate degradation. Thus, the levels of neither free IAA nor conjugated IAA increase detectably in the trp3-1 mutant compared to wild-type plants. Precursor-feeding experiments to shoots of sterile-grown wild-type plants using [2H]5-l-tryptophan have shown incorporation of label from this precursor into indole-3-acetonitrile and indole-3-acetic acid with very little isotope dilution. It is concluded that Arabidopsis thaliana shoots synthesize IAA from l-tryptophan and that the non-tryptophan pathway is probably an artifact. Received: 1 March 2000 / Accepted: 10 April 2000  相似文献   

11.
12.
The retromer complex is responsible for retrograde transport,which is coordinated with anterograde transport in the secretorypathway including vacuolar protein sorting. Yeast VPS35 is acomponent of the retromer complex that is essential for recognitionof specific cargo molecules. The physiological function of VPS35has not been determined in vacuolar protein sorting in higherorganisms. Arabidopsis thaliana has three VPS35 homologs designatedVPS35a, VPS35b and VPS35c. We isolated four vps35 mutants (vps35a-1,vps35b-1, vps35b-2 and vps35c-1) and then generated four doublemutants and one triple mutant. vps35a-1 vps35c-1 exhibited nounusual phenotypes. On the other hand, vps35b-1 vps35c-1 andthe triple mutant (vps35a-1 vps35b-2 vps35c-1) exhibited severephenotypes: dwarfism, early leaf senescence and fragmentationof protein storage vacuoles (PSVs). In addition, these mutantsmis-sorted storage proteins by secreting them out of the cellsand accumulated a higher level of vacuolar sorting receptor(VSR) than the wild type. VPS35 was localized in pre-vacuolarcompartments (PVCs), some of which contained VSR. VPS35 wasimmunoprecipitated with VPS29/MAG1, another component of theretromer complex. Our findings suggest that VPS35, mainly VPS35b,is involved in sorting proteins to PSVs in seeds, possibly byrecycling VSR from PVCs to the Golgi complex, and is also involvedin plant growth and senescence in vegetative organs.  相似文献   

13.
14.
Zhai Q  Li CB  Zheng W  Wu X  Zhao J  Zhou G  Jiang H  Sun J  Lou Y  Li C 《Plant & cell physiology》2007,48(7):1061-1071
An Arabidopsis mutant line named hy1-101 was isolated because it shows stunted root growth on medium containing low concentrations of jasmonic acid (JA). Subsequent investigation indicated that even in the absence of JA, hy1-101 plants exhibit shorter roots and express higher levels of a group of JA-inducible defense genes. Here, we show that the hy1-101 mutant has increased production of JA and its jasmonate-related phenotype is suppressed by the coi1-1 mutation that interrupts JA signaling. Gene cloning and genetic complementation analyses revealed that the hy1-101 mutant contains a mutation in the HY1 gene, which encodes a heme oxygenase essential for phytochrome chromophore biosynthesis. These results support a hypothesis that phytochrome chromophore deficiency leads to overproduction of JA and activates COI1-dependent JA responses. Indeed, we show that, like hy1-101, independent alleles of the phytochrome chromophore-deficient mutants, including hy1-100 and hy2 (CS68), also show elevated JA levels and constant expression of JA-inducible defense genes. We further provide evidence showing that, on the other hand, JA inhibits the expression of a group of light-inducible and photosynthesis-related genes. Together, these data imply that the JA-signaled defense pathway and phytochrome chromophore-mediated light signaling might have antagonistic effects on each other.  相似文献   

15.
Dynamin-related proteins are high molecular weight GTPase proteins found in a variety of eukaryotic cells from yeast to human. They are involved in diverse biological processes that include endocytosis in animal cells and vacuolar protein sorting in yeast. We isolated a new gene, ADL2, that encodes a dynamin-like protein in Arabidopsis. The ADL2 cDNA is 2.68 kb in size and has an open reading frame for 809 amino acid residues with a calculated molecular mass of 90 kDa. Sequence analysis of ADL2 revealed a high degree of amino acid sequence similarity to other members of the dynamin superfamily. Among those members ADL2 was most closely related to Dnm1p of yeast and thus appears to be a member of the Vps1p subfamily. Expression studies showed that the ADL2 gene is widely expressed in various tissues with highest expression in flower tissues. In vivo targeting experiments showed that ADL2:smGFP fusion protein is localized to chloroplasts in soybean photoautroph cells. In addition experiments with deletion constructs revealed that the N-terminal 35 amino acid residues were sufficient to direct the smGFP into chloroplasts in tobacco protoplasts when expressed as a fusion protein.  相似文献   

16.
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin‐dependent turnover of key proteins. Here, we identified a novel plant U‐box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE‐ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA‐insensitive mutants abi1‐1 and abi2‐1, but enhanced in the ABA‐hypersensitive mutant era1‐3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin‐dependent degradation via the 26S proteasome to prevent premature senescence.  相似文献   

17.
18.
Phytohormone indole-3-acetic acid (IAA) plays a vital role in regulating plant growth and development. Tryptophan-dependent IAA biosynthesis participates in IAA homeostasis by producing IAA via two sequential reactions, which involve a conversion of tryptophan to indole-3-pyruvic acid (IPyA) by tryptophan aminotransferase (TAA1) followed by the irreversible formation of IAA in the second reaction. Pad-1 from Solanaceae plants regulates IAA levels by catalyzing a reverse reaction of the first step of IAA biosynthesis. Pad-1 is a pyridoxal phosphate (PLP)-dependent aminotransferase, with IPyA as the amino acceptor and l-glutamine as the amino donor. Currently, the structural and functional basis for the substrate specificity of Pad-1 remains poorly understood. In this study, we carried out structural and kinetic analyses of Pad-1 from Solanum melongena. Pad-1 is a homodimeric enzyme, with coenzyme PLP present between a central large α/β domain and a protruding small domain. The active site of Pad-1 includes a vacancy near the phosphate group (P-side) and the 3′-O (O-side) of PLP. These features are distinct from those of TAA1, which is homologous in an overall structure with Pad-1 but includes only the P-side region in the active site. Kinetic analysis suggests that P-side residues constitute a binding pocket for l-glutamine, and O-side residues of Phe124 and Ile350 are involved in the binding of IPyA. These studies illuminate distinct differences in the active site between Pad-1 and TAA1, and provide structural and functional insights into the substrate specificity of Pad-1.  相似文献   

19.
The sub-cellular location of enzymes of fatty acid β-oxidation in plants is controversial. In the current debate the role and location of particular thiolases in fatty acid degradation, fatty acid synthesis and isoleucine degradation are important. The aim of this research was to determine the sub-cellular location and hence provide information about possible functions of all the putative 3-ketoacyl-CoA thiolases (KAT) and acetoacetyl-CoA thiolases (ACAT) in Arabidopsis. Arabidopsis has three genes predicted to encode KATs, one of which encodes two polypeptides that differ at the N-terminal end. Expression in Arabidopsis cells of cDNAs encoding each of these KATs fused to green fluorescent protein (GFP) at their C-termini showed that three are targeted to peroxisomes while the fourth is apparently cytosolic. The four KATs are also predicted to have mitochondrial targeting sequences, but purified mitochondria were unable to import any of the proteins in vitro. Arabidopsis also has two genes encoding a total of five different putative ACATs. One isoform is targeted to peroxisomes as a fusion with GFP, while the others display no targeting in vivo as GFP fusions, or import into isolated mitochondria. Analysis of gene co-expression clusters in Arabidopsis suggests a role for peroxisomal KAT2 in β-oxidation, while KAT5 co-expresses with genes of the flavonoid biosynthesis pathway and cytosolic ACAT2 clearly co-expresses with genes of the cytosolic mevalonate biosynthesis pathway. We conclude that KATs and ACATs are present in the cytosol and peroxisome, but are not found in mitochondria. The implications for fatty acid β-oxidation and for isoleucine degradation in mitochondria are discussed.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号