首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collective decision-making is a process whereby the members of a group decide on a course of action by consensus. In this paper, we propose a collective decision-making mechanism for robot swarms deployed in scenarios in which robots can choose between two actions that have the same effects but that have different execution times. The proposed mechanism allows a swarm composed of robots with no explicit knowledge about the difference in execution times between the two actions to choose the one with the shorter execution time. We use an opinion formation model that captures important elements of the scenarios in which the proposed mechanism can be used in order to predict the system??s behavior. The model predicts that when the two actions have different average execution times, the swarm chooses with high probability the action with the shorter average execution time. We validate the model??s predictions through a swarm robotics experiment in which robot teams must choose one of two paths of different length that connect two locations. Thanks to the proposed mechanism, a swarm made of robot teams that do not measure time or distance is able to choose the shorter path.  相似文献   

2.
We study self-organized cooperation between heterogeneous robotic swarms. The robots of each swarm play distinct roles based on their different characteristics. We investigate how the use of simple local interactions between the robots of the different swarms can let the swarms cooperate in order to solve complex tasks. We focus on an indoor navigation task, in which we use a swarm of wheeled robots, called foot-bots, and a swarm of flying robots that can attach to the ceiling, called eye-bots. The task of the foot-bots is to move back and forth between a source and a target location. The role of the eye-bots is to guide foot-bots: they choose positions at the ceiling and from there give local directional instructions to foot-bots passing by. To obtain efficient paths for foot-bot navigation, eye-bots need on the one hand to choose good positions and on the other hand learn the right instructions to give. We investigate each of these aspects. Our solution is based on a process of mutual adaptation, in which foot-bots execute instructions given by eye-bots, and eye-bots observe the behavior of foot-bots to adapt their position and the instructions they give. Our approach is inspired by pheromone mediated navigation of ants, as eye-bots serve as stigmergic markers for foot-bot navigation. Through simulation, we show how this system is able to find efficient paths in complex environments, and to display different kinds of complex and scalable self-organized behaviors, such as shortest path finding and automatic traffic spreading.  相似文献   

3.
In swarm robotics, communication among the robots is essential. Inspired by biological swarms using pheromones, we propose the use of chemical compounds to realize group foraging behavior in robot swarms. We designed a fully autonomous robot, and then created a swarm using ethanol as the trail pheromone allowing the robots to communicate with one another indirectly via pheromone trails. Our group recruitment and cooperative transport algorithms provide the robots with the required swarm behavior. We conducted both simulations and experiments with real robot swarms, and analyzed the data statistically to investigate any changes caused by pheromone communication in the performance of the swarm in solving foraging recruitment and cooperative transport tasks. The results show that the robots can communicate using pheromone trails, and that the improvement due to pheromone communication may be non-linear, depending on the size of the robot swarm.  相似文献   

4.
This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.  相似文献   

5.
Self-organised path formation in a swarm of robots   总被引:1,自引:0,他引:1  
In this paper, we study the problem of exploration and navigation in an unknown environment from an evolutionary swarm robotics perspective. In other words, we search for an efficient exploration and navigation strategy for a swarm of robots, which exploits cooperation and self-organisation to cope with the limited abilities of the individual robots. The task faced by the robots consists in the exploration of an unknown environment in order to find a path between two distant target areas. The collective strategy is synthesised through evolutionary robotics techniques, and is based on the emergence of a dynamic structure formed by the robots moving back and forth between the two target areas. Due to this structure, each robot is able to maintain the right heading and to efficiently navigate between the two areas. The evolved behaviour proved to be effective in finding the shortest path, adaptable to new environmental conditions, scalable to larger groups and larger environment size, and robust to individual failures.  相似文献   

6.
An important characteristic of a robot swarm that must operate in the real world is the ability to cope with changeable environments by exhibiting behavioural plasticity at the collective level. For example, a swarm of foraging robots should be able to repeatedly reorganise in order to exploit resource deposits that appear intermittently in different locations throughout their environment. In this paper, we report on simulation experiments with homogeneous foraging robot teams and show that analysing swarm behaviour in terms of information flow can help us to identify whether a particular behavioural strategy is likely to exhibit useful swarm plasticity in response to dynamic environments. While it is beneficial to maximise the rate at which robots share information when they make collective decisions in a static environment, plastic swarm behaviour in changeable environments requires regulated information transfer in order to achieve a balance between the exploitation of existing information and exploration leading to acquisition of new information. We give examples of how information flow analysis can help designers to decide on robot control strategies with relevance to a number of applications explored in the swarm robotics literature.  相似文献   

7.
This paper contributes with the first validation of swarm cognition as a useful framework for the design of autonomous robots controllers. The proposed model is built upon the authors’ previous work validated on a simulated robot performing local navigation on a 2-D deterministic world. Based on the ant foraging metaphor and motivated by the multiple covert attention hypothesis, the model consists of a set of simple virtual agents inhabiting the robot’s visual input, searching in a collectively coordinated way for obstacles. Parsimonious and accurate visual attention, operating on a by-need basis, is attained by making the activity of these agents modulated by the robot’s action selection process. A by-product of the system is the maintenance of active, parallel and sparse spatial working memories. In short, the model exhibits the self-organisation of a relevant set of features composing a cognitive system. To show its robustness, the model is extended in this paper to handle the challenges of physical off-road robots equipped with noisy stereoscopic vision sensors. Furthermore, an extensive aggregate of biological arguments sustaining the model is provided. Experimental results show the ability of the model to robustly control the robot on a local navigation task, with less than 1% of the robot’s visual input being analysed. Hence, with this system the computational cost of perception is considerably reduced, thus fostering robot miniaturisation and energetic efficiency. This confirms the advantages of using a swarm-based system, operating in an intricate way with action selection, to judiciously control visual attention and maintain sparse spatial memories, constituting a basic form of swarm cognition.  相似文献   

8.
Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.  相似文献   

9.
10.
Until now, the predominant use cases of industrial robots have been routine handling tasks in the automotive industry. In biotechnology and tissue engineering, in contrast, only very few tasks have been automated with robots. New developments in robot platform and robot sensor technology, however, make it possible to automate plants that largely depend on human interaction with the production process, e.g., for material and cell culture fluid handling, transportation, operation of equipment, and maintenance. In this paper we present a robot system that lends itself to automating routine tasks in biotechnology but also has the potential to automate other production facilities that are similar in process structure. After motivating the design goals, we describe the system and its operation, illustrate sample runs, and give an assessment of the advantages. We conclude this paper by giving an outlook on possible further developments.  相似文献   

11.
In this paper, we present an approach to designing decentralized robot control policies that mimic certain microscopic and macroscopic behaviors of ants performing collective transport tasks. In prior work, we used a stochastic hybrid system model to characterize the observed team dynamics of ant group retrieval of a rigid load. We have also used macroscopic population dynamic models to design enzyme-inspired stochastic control policies that allocate a robotic swarm around multiple boundaries in a way that is robust to environmental variations. Here, we build on this prior work to synthesize stochastic robot attachment–detachment policies for tasks in which a robotic swarm must achieve non-uniform spatial distributions around multiple loads and transport them at a constant velocity. Three methods are presented for designing robot control policies that replicate the steady-state distributions, transient dynamics, and fluxes between states that we have observed in ant populations during group retrieval. The equilibrium population matching method can be used to achieve a desired transport team composition as quickly as possible; the transient matching method can control the transient population dynamics of the team while driving it to the desired composition; and the rate matching method regulates the rates at which robots join and leave a load during transport. We validate our model predictions in an agent-based simulation, verify that each controller design method produces successful transport of a load at a regulated velocity, and compare the advantages and disadvantages of each method.  相似文献   

12.
Self-organized flocking in mobile robot swarms   总被引:1,自引:0,他引:1  
In this paper, we study self-organized flocking in a swarm of mobile robots. We present Kobot, a mobile robot platform developed specifically for swarm robotic studies. We describe its infrared-based short range sensing system, capable of measuring the distance from obstacles and detecting kin robots, and a novel sensing system called the virtual heading system (VHS) which uses a digital compass and a wireless communication module for sensing the relative headings of neighboring robots. We propose a behavior based on heading alignment and proximal control that is capable of generating self-organized flocking in a swarm of Kobots. By self-organized flocking we mean that a swarm of mobile robots, initially connected via proximal sensing, is able to wander in an environment by moving as a coherent group in open space and to avoid obstacles as if it were a “super-organism”. We propose a number of metrics to evaluate the quality of flocking. We use a default set of behavioral parameter values that can generate acceptable flocking in robots, and analyze the sensitivity of the flocking behavior against changes in each of the parameters using the metrics that were proposed. We show that the proposed behavior can generate flocking in a small group of physical robots in a closed arena as well as in a swarm of 1000 simulated robots in open space. We vary the three main characteristics of the VHS, namely: (1) the amount and nature of noise in the measurement of heading, (2) the number of VHS neighbors, and (3) the range of wireless communication. Our experiments show that the range of communication is the main factor that determines the maximum number of robots that can flock together and that the behavior is highly robust against the other two VHS characteristics. We conclude by discussing this result in the light of related theoretical studies in statistical physics.  相似文献   

13.
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.  相似文献   

14.
We present two swarm intelligence control mechanisms used for distributed robot path formation. In the first, the robots form linear chains. We study three variants of robot chains, which vary in the degree of motion allowed to the chain structure. The second mechanism is called vectorfield. In this case, the robots form a pattern that globally indicates the direction towards a goal or home location. We test each controller on a task that consists in forming a path between two objects which an individual robot cannot perceive simultaneously. Our simulation experiments show promising results. All the controllers are able to form paths in complex obstacle environments and exhibit very good scalability, robustness, and fault tolerance characteristics. Additionally, we observe that chains perform better for small robot group sizes, while vectorfield performs better for large groups.  相似文献   

15.
Artificial Pheromone System Using RFID for Navigation of Autonomous Robots   总被引:1,自引:0,他引:1  
Navigation system based on the animal behavior has received a growing attention in the past few years. The navigation systems using artificial pheromone are still few so far. For this reason, this paper presents our research that aim to implement autonomous navigation with artificial pheromone system. By introducing artificial pheromone system composed of data carriers and autonomous robots, the robotic system creates a potential field to navigate their group. We have developed a pheromone density model to realize the function of pheromones with the help of data carriers. We intend to show the effectiveness of the proposed system by performing simulations and realization using modified mobile robot. The pheromone potential field system can be used for navigation of autonomous robots.  相似文献   

16.
Currently, the control software of swarm robotics systems is created by ad hoc development. This makes it hard to deploy these systems in real-world scenarios. In particular, it is difficult to maintain, analyse, or verify the systems. Formal methods can contribute to overcome these problems. However, they usually do not guarantee that the implementation matches the specification, because the system’s control code is typically generated manually. Also, there is cultural resistance to apply formal methods; they may be perceived as an additional step that does not add value to the final product. To address these problems, we propose supervisory control theory for the domain of swarm robotics. The advantages of supervisory control theory, and its associated tools, are a reduction in the amount of ad hoc development, the automatic generation of control code from modelled specifications, proofs of properties over generated control code, and the reusability of formally designed controllers between different robotic platforms. These advantages are demonstrated in four case studies using the e-puck and Kilobot robot platforms. Experiments with up to 600 physical robots are reported, which show that supervisory control theory can be used to formally develop state-of-the-art solutions to a range of problems in swarm robotics.  相似文献   

17.
Although a variety of basic insect behaviours have inspired successful robot implementations, more complex capabilities in these 'simple' animals are often overlooked. By reviewing the general architecture of their nervous systems, we gain insight into how they are able to integrate behaviours, perform pattern recognition, context-dependent learning, and combine many sensory inputs in tasks such as navigation. We review in particular what is known about two specific 'higher' areas in the insect brain, the mushroom bodies and the central complex, and how they are involved in controlling an insect's behaviour. While much of the functional interpretation of this information is still speculative, it nevertheless suggests some promising new approaches to obtaining adaptive behaviour in robots.  相似文献   

18.
In research on small mobile robots and biomimetic robots,locomotion ability remains a major issue despite many advances in technology.However,evolution has led to there being many real animals capable of excellent locomotion.This paper presents a "parasitic robot system" whereby locomotion abilities of an animal are applied to a robot task.We chose a turtle as our first host animal and designed a parasitic robot that can perform "operant conditioning".The parasitic robot,which is attached to the turtle,can induce object-tracking behavior of the turtle toward a Light Emitting Diode (LED) and positively reinforce the behavior through repeated stimulus-response interaction.After training sessions over five weeks,the robot could successfully control the direction of movement of the trained turtles in the waypoint navigation task.This hybrid animal-robot interaction system could provide an alternative solution to some of the limitations of conventional mobile robot systems in various fields,and could also act as a useful interaction system for the behavioral sciences.  相似文献   

19.
Swarms of flying robots are a promising alternative to ground-based robots for search in indoor environments with advantages such as increased speed and the ability to fly above obstacles. However, there are numerous problems that must be surmounted including limitations in available sensory and on-board processing capabilities, and low flight endurance. This paper introduces a novel strategy to coordinate a swarm of flying robots for indoor exploration that significantly increases energy efficiency. The presented algorithm is fully distributed and scalable. It relies solely on local sensing and low-bandwidth communication, and does not require absolute positioning, localisation, or explicit world-models. It assumes that flying robots can temporarily attach to the ceiling, or land on the ground for efficient surveillance over extended periods of time. To further reduce energy consumption, the swarm is incrementally deployed by launching one robot at a time. Extensive simulation experiments demonstrate that increasing the time between consecutive robot launches significantly lowers energy consumption by reducing total swarm flight time, while also decreasing collision probability. As a trade-off, however, the search time increases with increased inter-launch periods. These effects are stronger in more complex environments. The proposed localisation-free strategy provides an energy efficient search behaviour adaptable to different environments or timing constraints.  相似文献   

20.
Stage is a C++ software library that simulates multiple mobile robots. Stage version 2, as the simulation backend for the Player/Stage system, may be the most commonly used robot simulator in research and university teaching today. Development of Stage version 3 has focused on improving scalability, usability, and portability. This paper examines Stage’s scalability. We propose a simple benchmark for multi-robot simulator performance, and present results for Stage. Run time is shown to scale approximately linearly with population size up to 100,000 robots. For example, Stage simulates 1 simple robot at around 1,000 times faster than real time, and 1,000 simple robots at around real time. These results suggest that Stage may be useful for swarm robotics researchers who would otherwise use custom simulators, with their attendant disadvantages in terms of code reuse and transparency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号