首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The results of neutron distance measurement involving ribosomal protein S1 from Escherichia coli are reported. These data provide a position for S1 on the small ribosomal subunit. They also indicate that S1, bound to the ribosome, has a radius of gyration of 60 to 65 Å, suggesting that its axial ratio in the bound state is similar to that it has as a free molecule in solution; namely, 10: 1. The implications of these results for our understanding of the mode of action of S1 are discussed.  相似文献   

2.
3.
A comparative study of the 30S ribosomal subunit in the complex with protein S1 and the subunit depleted of this protein has been carried out by the hot tritium bombardment method. Differences in exposure of some ribosomal proteins within the 30S subunit depleted of S1 and within the 30S–S1 complex were found. It was concluded that protein S1 binds in the region of the neck of the 30S ribosomal subunit inducing a conformational change of its structure.  相似文献   

4.
Troponin is a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle by participating in a series of conformational events within the actin-based thin filament. Troponin is a heterotrimeric complex consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT). Ternary troponin complexes have been produced by assembling recombinant chicken skeletal muscle TnC, TnI and the C-terminal portion of TnT known as TnT2. A full set of small-angle neutron scattering data has been collected from TnC-TnI-TnT2 ternary complexes, in which all possible combinations of the subunits have been deuterated, in both the +Ca2+ and -Ca2+ states. Small-angle X-ray scattering data were also collected from the same troponin TnC-TnI-TnT2 complex. Guinier analysis shows that the complex is monomeric in solution and that there is a large change in the radius of gyration of TnI when it goes from the +Ca2+ to the -Ca2+ state. Starting with a model based on the human cardiac troponin crystal structure, a rigid-body Monte Carlo optimization procedure was used to yield models of chicken skeletal muscle troponin, in solution, in the presence and in the absence of regulatory calcium. The optimization was carried out simultaneously against all of the scattering data sets. The optimized models show significant differences when compared to the cardiac troponin crystal structure in the +Ca2+ state and provide a structural model for the switch between +Ca2+ and -Ca2+ states. A key feature is that TnC adopts a dumbbell conformation in both the +Ca2+ and -Ca2+ states. More importantly, the data for the -Ca2+ state suggest a long extension of the troponin IT arm, consisting mainly of TnI. Thus, the troponin complex undergoes a large structural change triggered by Ca2+ binding.  相似文献   

5.
X-ray scattering titrations at 21 degree C and in ribosomal reconstitution buffer indicate that the S4-RNA and the protein S4 from a 1:1 complex with a stability constant, log K approximately 6.5. When the complex forms, there is only a limited change in the scattering curve indicating that S4-RNA essentially retains its conformation during the complex formation. The increase in the gyration radius as a result of the complex formation, delta R = 4 +/- 3 A, as well as the experimental scattering curve of the complex can be explained by models where the protein S4 is supposed to interact with the periphery of the S4-RNA.  相似文献   

6.
Fragments resistant to proteolysis have been obtained from the ribosomal protein S20. They provide evidence for a structural domain stretching from the middle of the protein to its C terminus. With the exception of a large fragment of this protein lacking only 14 residues at the N terminus, all fragments had lost their ability to bind to 16-S rRNA. The protein in the S20 . 16-S-RNA complex was highly protected against enzymic digestion, indicating that the entire protein is involved in interaction with the nucleic acid. Circular dichroism showed a high alpha helix content (36%) for the intact protein and a low alpha helix content (2%) for the large fragment. Intrinsic fluorescence studies demonstrated that the single tyrosine residue in protein S20 is exposed to the solvent in the intact protein and is not exposed in the S20 . 16-S-RNA complex. Irreversible thermal denaturation of the protein was followed by fluorescence of the tyrosine and was found between 50 degrees C and 70 degrees C.  相似文献   

7.
The Listeria monocytogenes surface protein InlB binds to the extracellular domain of the human receptor tyrosine kinase Met, the product of the c-met proto-oncogene. InlB binding activates the Met receptor, leading to uptake of Listeria into normally nonphagocytic host cells. The N-terminal half of InlB (InlB321) is sufficient for Met binding and activation. The complex between this Met-binding domain of InlB and various constructs of the Met ectodomain was characterized by size exclusion chromatography and dynamic light scattering, and structural models were built using small-angle X-ray scattering and small-angle neutron scattering. Although most receptor tyrosine kinase ligands induce receptor dimerization, InlB321 consistently binds the Met ectodomain with a 1:1 stoichiometry. A construct comprising the Sema and PSI domains of Met, although sufficient to bind the physiological Met ligand hepatocyte growth factor/scatter factor, does not form a complex with InlB321 in solution, highlighting the importance of Met Ig domains for InlB binding. Small-angle X-ray scattering and small-angle neutron scattering measurements of ligand and receptor, both free and in complex, reveal an elongated shape for the receptor. The four Ig domains form a bent, rather than a fully extended, conformation, and InlB321 binds to Sema and the first Ig domain of Met, in agreement with the recent crystal structure of a smaller Met fragment in complex with InlB321. These results call into question whether receptor dimerization is the basic underlying event in InlB321-mediated Met activation and demonstrate differences in the mechanisms by which the physiological ligand hepatocyte growth factor/scatter factor and InlB321 bind and activate the Met receptor.  相似文献   

8.
9.
The assembly of ribosomes requires a significant fraction of the energy expenditure for rapidly growing bacteria. The ribosome is composed of three large RNA molecules and over 50 small proteins that must be rapidly and efficiently assembled into the molecular machine responsible for protein synthesis. For over 30 years, the 30S ribosome has been a key model system for understanding the process of ribosome biogenesis through in vitro assembly experiments. We have recently developed an isotope pulse-chase experiment using quantitative mass spectrometry that permits assembly kinetics to be measured in real time. Kinetic studies have revealed an assembly energy landscape that ensures efficient assembly by a flexible and robust pathway.  相似文献   

10.
Small-angle X-ray and neutron scattering have been used to characterize the solution structure of rabbit skeletal phosphorylase kinase. The radius of gyration of the unactivated holoenzyme determined from neutron scattering is 94 A, and its maximum dimension is approximately 275-295 A. A planar model has been constructed that is in general agreement with the dimensions of the transmission electron microscope images of negatively stained phosphorylase kinase and that gives values for the radius of gyration, maximum linear dimension, and a pair distribution function for the structure that are consistent with the scattering data.  相似文献   

11.
The five ribosomal P-proteins, denoted P0-(P1-P2)2, constitute the stalk structure of the large subunit of eukaryotic ribosomes. In the yeast Saccharomyces cerevisiae, the group of P1 and P2 proteins is differentiated into subgroups that form two separate P1A-P2B and P1B-P2A heterodimers on the stalk. So far, structural studies on the P-proteins have not yielded any satisfactory information using either X-ray crystallography or NMR spectroscopy, and the structures of the ribosomal stalk and its individual constituents remain obscure. Here we outline a first, coarse-grained view of the P1A-P2B solution structure obtained by a combination of small-angle X-ray scattering and heteronuclear NMR spectroscopy. The complex has an elongated shape with a length of 10 nm and a cross section of approximately 2.5 nm. 15N NMR relaxation measurements establish that roughly 30% of the residues are present in highly flexible segments, which belong primarily to the linker region and the C-terminal part of the polypeptide chain. Secondary structure predictions and NMR chemical shift analysis, together with previous results from CD spectroscopy, indicate that the structured regions involve alpha-helices. NMR relaxation data further suggest that several helices are arranged in a nearly parallel or antiparallel topology. These results provide the first structural comparison between eukaryotic P1 and P2 proteins and the prokaryotic L12 counterpart, revealing considerable differences in their overall shapes, despite similar functional roles and similar oligomeric arrangements. These results present for the first time a view of the structure of the eukaryotic stalk constituents, which is the only domain of the eukaryotic ribosome that has escaped successful structural characterization.  相似文献   

12.
The location and frequency of RNA crosslinks induced by photoreaction of hydroxymethyltrimethylpsoralen with 30 S Escherichia coli ribosomal subunits have been determined by electron microscopy. At least seven distinct crosslinks between regions distant in the 16 S rRNA primary structure are seen in the inactive conformation of the 30 S particle. All correspond to crosslinked features seen when the free 16 S rRNA is treated with hydroxymethyltrimethylpsoralen. The most frequently observed crosslink occurs between residues near one end of the molecule and residues about 600 nucleotides away to generate a loop of 570 bases. The size and orientation of this feature indicate it corresponds to the crosslinked feature located at the 3′ end of free 16 S rRNA.When active 30 S particles are crosslinked in 5 mm-Mg2+, six of the seven features seen in the inactive 30 S particle can still be detected. However, the frequency of several of the features, and particularly the 570-base loop feature, is dramatically decreased. This suggests that the long-range contacts that lead to these crosslinks are either absent or inaccessible in the active conformation. Crosslinking results in some loss of functional activities of the 30 S particle. This is consistent with the notion that the presence of the crosslink that generates the 570-base loop traps the subunit in an inactive form, which cannot associate with 50 S particles.The arrangement of the interacting regions crosslinked by hydroxymethyltrimethylpsoralen suggests that the RNA may be organized into three general domains. A striking feature of the Crosslinking pattern is that three of the seven products involve regions near the 3′ end of the 16 S rRNA. These serve to tie together large sections of rRNA. Thus structural changes at the 3′ end could, in principle, be felt through the entire 30 S particle.  相似文献   

13.
The 5-S RNA (A) and the proteins L 18 (B) and L25 (C) from Escherichia coli ribosomes form a ternary complex of the type ABC with a stepwise stability constant, log K111 approximately equal to 6.5. This is indicated from X-ray scattering titrations recorded at 21 degrees C in ribosomal reconstitutional buffer. When the ternary ABC complex forms there is only a limited change in the scattering curve compared to that of 5-S RNA, indicating that 5-S RNA does not undergo a major conformational change during the complex formation. The increase in the radius of gyration from 3.61 nm (5-S RNA) to 3.95 nm (ABC complex) as well as the experimental scattering curve can be explained by models where it is assumed that the elongated L 18 and L25 models are quite far from the electron density centre and where the protein molecules interact mainly with the minor arms of the supposed Y-shaped 5-S RNA molecule.  相似文献   

14.
We report here the low-resolution structure of the complex formed by the endo-polygalacturonase from Fusarium phyllophilum and one of the polygalacturonase-inhibiting protein from Phaseolus vulgaris after chemical cross-linking as determined by small-angle x-ray scattering analysis. The inhibitor engages its concave surface of the leucine-rich repeat domain with the enzyme. Both sides of the enzyme active site cleft interact with the inhibitor, accounting for the competitive mechanism of inhibition observed. The structure is in agreement with previous site-directed mutagenesis data and has been further validated with structure-guided mutations and subsequent assay of the inhibitory activity. The structure of the complex may help the design of inhibitors with improved or new recognition capabilities to be used for crop protection.  相似文献   

15.
The B820 subunit is an integral pigment-membrane protein complex and can be obtained by both dissociation of the core light-harvesting complex (LH1) in photosynthetic bacteria and reconstitution from its component parts in the presence of n-octyl beta-D-glucopyranoside (OG). Intrinsic size of the B820 subunit from Rhodospirillum rubrum LH1 complex was measured by small-angle neutron scattering in perdeuterated OG solution and evaluated by Guinier analysis. Both the B820 subunits prepared by dissociation of LH1 and reconstitution from apopolypeptides and pigments were shown to have a molecular weight of 11,400 +/- 500 and radius of gyration of 11.0 +/- 1.0 A, corresponding to a heterodimer consisting of one pair of alphabeta-polypeptides and two bacteriochlorophyll a molecules. Molecular weights of micelles formed by OG alone in solutions were determined in a range from 30,000 to 50,000 over concentrations of 1-5% (w/v), and thus are much larger than that of the B820 subunit. Similar measurement on the pigment-depleted apopolypeptides revealed highly heterogeneous behavior in the OG solutions, indicating that aggregates with various sizes were formed. The result provides evidence that bacteriochlorophyll a molecules play a crucial role in stabilizing and maintaining the B820 subunits in the dimeric state in solution. Further measurements on individual alpha- and beta-polypeptides exhibited a marked difference in aggregation property between the two polypeptides. The alpha-polypeptides appear to be uniformly dissolved in OG solution in a monomeric form, whereas the beta-polypeptides favor a self-associated form and tend to form large aggregates even in the presence of detergent. The difference in aggregation tendency was discussed in relation to the different behavior between alpha- and beta-polypeptides in reconstitution with bacteriochlorophyll a molecules.  相似文献   

16.
Type I restriction-modification (R-M) systems encode multisubunit/multidomain enzymes. Two genes (M and S) are required to form the methyltransferase (MTase) that methylates a specific base within the recognition sequence and protects DNA from cleavage by the endonuclease. The DNA methyltransferase M.AhdI is a 170 kDa tetramer with the stoichiometry M(2)S(2) and has properties typical of a type I MTase. The M.AhdI enzyme has been prepared with deuterated S subunits, to allow contrast variation using small-angle neutron scattering (SANS) methods. The SANS data were collected in a number of (1)H:(2)H solvent contrasts to allow matching of one or other of the subunits in the multisubunit enzyme. The radius of gyration (R(g)) and maximum dimensions (D(max)) of the M subunits in situ in the multisubunit enzyme (50 A and 190 A, respectively) are close of those of the entire MTase (51 A and 190 A). In contrast, the S subunits in situ have experimentally determined values of R(g)=35 A and D(max)=110 A, indicating their more central location in the enzyme. Ab initio reconstruction methods yield a low-resolution structural model of the shape and subunit organization of M.AhdI, in which the Z-shaped structure of the S subunit dimer can be discerned. In contrast, the M subunits form a much more elongated and extended structure. The core of the MTase comprises the two S subunits and the globular regions of the two M subunits, with the extended portion of the M subunits most probably forming highly mobile regions at the outer extremities, which collapse around the DNA when the MTase binds.  相似文献   

17.
We developed a novel, to our knowledge, technique for real-time monitoring of subunit exchange in homooligomeric proteins, using deuteration-assisted small-angle neutron scattering (SANS), and applied it to the tetradecamer of the proteasome α7 subunit. Isotopically normal and deuterated tetradecamers exhibited identical SANS profiles in 81% D2O solution. After mixing these solutions, the isotope sensitive SANS intensity in the low-q region gradually decreased, indicating subunit exchange, whereas the small-angle x-ray scattering profile remained unchanged confirming the structural integrity of the tetradecamer particles during the exchange. Kinetic analysis of zero-angle scattering intensity indicated that 1), only two of the 14 subunits were exchanged in each tetradecamer and 2), the exchange process involves at least two steps. This study underscores the usefulness of deuteration-assisted SANS, which can provide quantitative information not only on the molecular sizes and shapes of homooligomeric proteins, but also on their kinetic properties.  相似文献   

18.
Crystals of protein S6 from the small ribosomal subunit of an extreme thermophile, Thermus thermophilus, have been obtained by the hanging-drop/vapor diffusion technique using methane pentanediol as a precipitant in the presence of potassium fluoride. The crystals belong to the space group C222 with cell parameters a = 106.7, b = 52.8, c = 41.0 A. They diffract to 2.0 A resolution.  相似文献   

19.
Poly(U)-dependent polyphenylalanine synthesis is completely dependent on the presence of ribosomal protein S1. Polysomes generated under the direction of poly(U) contain approximately one molecule of S1 per ribosome. Isolation of 30 S ribosomes from poly(U)-generated polysomes by a procedure requiring a low concentration of Mg2+ (0·25 mM) results in loss of S1. S1 is probably also required for the phage RNA-dependent binding of formylmethionyl-tRNA. The data are discussed in relation to current concepts of the functional aspects of ribosome heterogeneity.  相似文献   

20.
Under appropriate conditions, functional Escherichia coli 30S ribosomal subunits assemble in vitro from purified components. However, at low temperatures, assembly stalls, producing an intermediate (RI) that sediments at 21S and is composed of 16S ribosomal RNA (rRNA) and a subset of ribosomal proteins (r-proteins). Incubation of RI at elevated temperatures produces a particle, RI*, of similar composition but different sedimentation coefficient (26S). Once formed, RI* rapidly associates with the remaining r-proteins to produce mature 30S subunits. To understand the nature of this transition from RI to RI*, changes in the reactivity of 16S rRNA between these two states were monitored by chemical modification and primer extension analysis. Evaluation of this data using structural and biochemical information reveals that many changes are r-protein-dependent and some are clustered in functional regions, suggesting that this transition is an important step in functional 30S subunit formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号