首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Planar cell polarity (PCP), the alignment of cells within 2D tissue planes, involves a set of core molecular regulators highly conserved between animals and cell types. These include the transmembrane proteins Frizzled (Fz) and VanGogh and the cytoplasmic regulators Dishevelled (Dsh) and Prickle. It is widely accepted that this core forms part of a 'PCP pathway' for signal transduction, which can affect cell morphology through activation of an evolutionary ancient regulatory module involving Rho family GTPases and Myosin II, and/or the JNK kinase cascade. We have re-examined the evidence for interactions between the proposed PCP pathway components, and question the placing of the cell morphology regulators in the same pathway as the PCP core. While Fz and Dsh are clearly involved in both PCP and Rho-based cell morphology regulation, available evidence cannot currently discriminate whether these processes are linked mechanistically by a shared Fz/Dsh population, or pass by two distinct pathways.  相似文献   

2.
Many epithelia have a common planar cell polarity (PCP), as exemplified by the consistent orientation of hairs on mammalian skin and insect cuticle. One conserved system of PCP depends on Starry night (Stan, also called Flamingo), an atypical cadherin that forms homodimeric bridges between adjacent cells. Stan acts together with other transmembrane proteins, most notably Frizzled (Fz) and Van Gogh (Vang, also called Strabismus). Here, using an in vivo assay for function, we show that the quintessential core of the Stan system is an asymmetric intercellular bridge between Stan in one cell and Stan acting together with Fz in its neighbour: such bridges are necessary and sufficient to polarise hairs in both cells, even in the absence of Vang. By contrast, Vang cannot polarise cells in the absence of Fz; instead, it appears to help Stan in each cell form effective bridges with Stan plus Fz in its neighbours. Finally, we show that cells containing Stan but lacking both Fz and Vang can be polarised to make hairs that point away from abutting cells that express Fz. We deduce that each cell has a mechanism to estimate and compare the numbers of asymmetric bridges, made between Stan and Stan plus Fz, that link it with its neighbouring cells. We propose that cells normally use this mechanism to read the local slope of tissue-wide gradients of Fz activity, so that all cells come to point in the same direction.  相似文献   

3.
《Fly》2013,7(4):316-321
Planar cell polarity (PCP) describes the orientation of a cell within the plane of an epithelial cell layer. During tissue development, epithelial cells normally align their PCP so that they face in the same direction. This alignment allows cells to move in a common direction, or to generate structures with a common orientation. A classic system for studying the coordination of epithelial PCP is the developing Drosophila wing. The alignment of epithelial PCP during pupal wing development allows the production of an array of cell hairs that point towards the wing tip. Multiple studies have established that the Frizzled (Fz) PCP signaling pathway coordinates wing PCP. Recently, we have found that the same pathway also controls the formation of ridges on the Drosophila wing membrane. However, in contrast to hair polarity, ridge orientation differs between the anterior and posterior wing. How can the Fz PCP pathway generate a different relationship between hair and ridge orientation in different parts of the wing? In this Extra View article, we discuss membrane ridge development drawing upon our recent PLoS Genetics paper and other, published and unpublished, data. We also speculate upon how our findings impact the ongoing debate concerning the interaction of the Fz PCP and Fat/Dachsous pathways in the control of PCP.  相似文献   

4.
Planar cell polarity (PCP) describes the orientation of a cell within the plane of an epithelial cell layer. During tissue development, epithelial cells normally align their PCP so that they face in the same direction. This alignment allows cells to move in a common direction, or to generate structures with a common orientation. A classic system for studying the coordination of epithelial PCP is the developing Drosophila wing. The alignment of epithelial PCP during pupal wing development allows the production of an array of cell hairs that point towards the wing tip. Multiple studies have established that the Frizzled (Fz) PCP signaling pathway coordinates wing PCP. Recently, we have found that the same pathway also controls the formation of ridges on the Drosophila wing membrane. However, in contrast to hair polarity, ridge orientation differs between the anterior and posterior wing. How can the Fz PCP pathway generate a different relationship between hair and ridge orientation in different parts of the wing? In this Extra View article, we discuss membrane ridge development drawing upon our recent PLoS Genetics paper and other, published and unpublished, data. We also speculate upon how our findings impact the ongoing debate concerning the interaction of the Fz PCP and Fat/Dachsous pathways in the control of PCP.  相似文献   

5.
The Drosophila wing is a primary model system for studying the genetic control of epithelial Planar Cell Polarity (PCP). Each wing epithelial cell produces a distally pointing hair under the control of the Frizzled (Fz) PCP signaling pathway. Here, we show that Fz PCP signaling also controls the formation and orientation of ridges on the adult wing membrane. Ridge formation requires hexagonal cell packing, consistent with published data showing that Fz PCP signaling promotes hexagonal packing in developing wing epithelia. In contrast to hair polarity, ridge orientation differs across the wing and is primarily anteroposterior (A-P) in the anterior and proximodistal (P-D) in the posterior. We present evidence that A-P ridge specification is genetically distinct from P-D ridge organization and occurs later in wing development. We propose a two-phase model for PCP specification in the wing. P-D ridges are specified in an Early PCP Phase and both A-P ridges and distally pointing hairs in a Late PCP Phase. Our data suggest that isoforms of the Fz PCP pathway protein Prickle are differentially required for the two PCP Phases, with the Spiny-legs isoform primarily active in the Early PCP Phase and the Prickle isoform in the Late PCP Phase.  相似文献   

6.
7.
The regular array of distally pointing hairs on the mature Drosophila wing is evidence for the fine control of Planar Cell Polarity (PCP) during wing development. Normal wing PCP requires both the Frizzled (Fz) PCP pathway and the Fat/Dachsous (Ft/Ds) pathway, although the functional relationship between these pathways remains under debate. There is strong evidence that the Fz PCP pathway signals twice during wing development, and we have previously presented a Bidirectional-Biphasic Fz PCP signaling model which proposes that the Early and Late Fz PCP signals are in different directions and employ different isoforms of the Prickle protein. The goal of this study was to investigate the role of the Ft/Ds pathway in the context of our Fz PCP signaling model. Our results allow us to draw the following conclusions: (1) The Early Fz PCP signals are in opposing directions in the anterior and posterior wing and converge precisely at the site of the L3 wing vein. (2) Increased or decreased expression of Ft/Ds pathway genes can alter the direction of the Early Fz PCP signal without affecting the Late Fz PCP signal. (3) Lowfat, a Ft/Ds pathway regulator, is required for the normal orientation of the Early Fz PCP signal but not the Late Fz PCP signal. (4) At the time of the Early Fz PCP signal there are symmetric gradients of dachsous (ds) expression centered on the L3 wing vein, suggesting Ds activity gradients may orient the Fz signal. (5) Localized knockdown or over-expression of Ft/Ds pathway genes shows that boundaries/gradients of Ft/Ds pathway gene expression can redirect the Early Fz PCP signal specifically. (6) Altering the timing of ds knockdown during wing development can separate the role of the Ft/Ds pathway in wing morphogenesis from its role in Early Fz PCP signaling.  相似文献   

8.
Wu J  Mlodzik M 《Developmental cell》2008,15(3):462-469
The Frizzled (Fz) receptor is required cell autonomously in Wnt/beta-catenin and planar cell polarity (PCP) signaling. In addition to these requirements, Fz acts nonautonomously during PCP establishment: wild-type cells surrounding fz(-) patches reorient toward the fz(-) cells. The molecular mechanism(s) of nonautonomous Fz signaling are unknown. Our in vivo studies identify the extracellular domain (ECD) of Fz, in particular its CRD (cysteine rich domain), as critical for nonautonomous Fz-PCP activity. Importantly, we demonstrate biochemical and physical interactions between the FzECD and the transmembrane protein Van Gogh/Strabismus (Vang/Stbm). We show that this function precedes cell-autonomous interactions and visible asymmetric PCP factor localization. Our data suggest that Vang/Stbm can act as a FzECD receptor, allowing cells to sense Fz activity/levels of their neighbors. Thus, direct Fz-Vang/Stbm interactions represent an intriguing mechanism that may account for the global orientation of cells within the plane of their epithelial field.  相似文献   

9.
Cellular morphogenesis, including polarized outgrowth, promotes tissue shape and function. Polarized vesicle trafficking has emerged as a fundamental mechanism by which protein and membrane can be targeted to discrete subcellular domains to promote localized protrusions. Frizzled (Fz)/planar cell polarity (PCP) signaling orchestrates cytoskeletal polarization and drives morphogenetic changes in such contexts as the vertebrate body axis and external Drosophila melanogaster tissues. Although regulation of Fz/PCP signaling via vesicle trafficking has been identified, the interplay between the vesicle trafficking machinery and downstream terminal PCP-directed processes is less established. In this paper, we show that Drosophila CK1-γ/gilgamesh (gish) regulates the PCP-associated process of trichome formation through effects on Rab11-mediated vesicle recycling. Although the core Fz/PCP proteins dictate prehair formation broadly, CK1-γ/gish restricts nucleation to a single site. Moreover, CK1-γ/gish works in parallel with the Fz/PCP effector multiple wing hairs, which restricts prehair formation along the perpendicular axis to Gish. Our findings suggest that polarized Rab11-mediated vesicle trafficking regulated by CK1-γ is required for PCP-directed processes.  相似文献   

10.
Frizzled/planar cell polarity (Fz/PCP) signaling controls the orientation of sensory bristles and cellular hairs (trichomes) along the anteroposterior axis of the Drosophila thorax (notum). A subset of the trichome-producing notum cells differentiate as "tendon cells," serving as attachment sites for the indirect flight muscles (IFMs) to the exoskeleton. Through the analysis of chascon (chas), a gene identified by its ability to disrupt Fz/PCP signaling under overexpression conditions, and jitterbug (jbug)/filamin, we show that maintenance of anteroposterior planar polarization requires the notum epithelia to balance mechanical stress generated by the attachment of the IFMs. chas is expressed in notum tendon cells, and its loss of function disturbs cellular orientation at and near the regions where IFMs attach to the epidermis. This effect is independent of the Fz/PCP and fat/dachsous systems. The chas phenotype arises during normal shortening of the IFMs and is suppressed by genetic ablation of the IFMs. chas acts through jbug/filamin and cooperates with MyosinII to modulate the mechanoresponse of notum tendon cells. These observations support the notion that the ability of epithelia to respond to mechanical stress generated by one or more interactions with other tissues during development and organogenesis influences the maintenance of its shape and PCP features.  相似文献   

11.
Members of the Frizzled (Fz) family of seven-pass transmembrane receptors are required for the transduction of both Wnt-Fz/beta-catenin and Fz/planar cell polarity (PCP) signals. Although both pathways transduce signals via interactions between Fz and the cytoplasmic protein Dishevelled (Dsh), each pathway has specific and distinct effectors. One explanation for the pathway specificity is that signal-induced conformational changes result in unique Fz-Dsh interactions. Our mutational analyses of Fz-Dsh activities in vivo do however not support this model, since both pathways are affected by all mutations tested. Alternatively, the interaction of Fz or Dsh with other proteins could modulate the signaling outcome. We examined the role of a Dsh-binding PCP molecule, Diego (Dgo), in both Wnt-Fz/beta-catenin and Fz/PCP signaling. Both loss-of-function and gain-of-function results suggest that Dgo promotes Fz-Dsh/PCP signaling at the expense of Wnt-Fz/beta-catenin signaling. Our data suggest that Dgo sequesters Dsh to a functionally distinct Fz/PCP signaling compartment within the cell.  相似文献   

12.
Djiane A  Yogev S  Mlodzik M 《Cell》2005,121(4):621-631
Planar cell polarity (PCP) is a common feature of many vertebrate and invertebrate epithelia and is perpendicular to their apical/basal (A/B) polarity axis. While apical localization of PCP determinants such as Frizzled (Fz1) is critical for their function, the link between A/B polarity and PCP is poorly understood. Here, we describe a direct molecular link between A/B determinants and Fz1-mediated PCP establishment in the Drosophila eye. We demonstrate that dPatj binds the cytoplasmic tail of Fz1 and propose that it recruits aPKC, which in turn phosphorylates and inhibits Fz1. Accordingly, components of the aPKC complex and dPatj produce PCP defects in the eye. We also show that during PCP signaling, aPKC and dPatj are downregulated, while Bazooka is upregulated, suggesting an antagonistic effect of Bazooka on dPatj/aPKC. We propose a model whereby the dPatj/aPKC complex regulates PCP by inhibiting Fz1 in cells where it should not be active.  相似文献   

13.
Planar cell polarity (PCP) in the Drosophila eye is established by the distinct fate specifications of photoreceptors R3 and R4, and is regulated by the Frizzled (Fz)/PCP signaling pathway. Before the PCP proteins become asymmetrically localized to opposite poles of the cell in response to Fz/PCP signaling, they are uniformly apically colocalized. Little is known about how the apical localization is maintained. We provide evidence that the PCP protein Diego (Dgo) promotes the maintenance of apical localization of Flamingo (Fmi), an atypical Cadherin-family member, which itself is required for the apical localization of the other PCP factors. This function of Dgo is redundant with Prickle (Pk) and Strabismus (Stbm), and only appreciable in double mutant tissue. We show that the initial membrane association of Dgo depends on Fz, and that Dgo physically interacts with Stbm and Pk through its Ankyrin repeats, providing evidence for a PCP multiprotein complex. These interactions suggest a positive feedback loop initiated by Fz that results in the apical maintenance of other PCP factors through Fmi.  相似文献   

14.
Frizzled (Fz) signaling regulates the establishment of planar cell polarity (PCP). The PCP genes prickle (pk) and strabismus (stbm) are thought to antagonize Fz signaling. We show that they act in the same cell, R4, adjacent to that in which the Fz/PCP pathway is required in the Drosophila eye. We demonstrate that Stbm and Pk interact physically and that Stbm recruits Pk to the cell membrane. Through this interaction, Pk affects Stbm membrane localization and can cause clustering of Stbm. Pk is also known to interact with Dsh and is thought to antagonize Dsh by affecting its membrane localization. Thus our data suggest that the Stbm/Pk complex modulates Fz/Dsh activity, resulting in a symmetry-breaking step during polarity signaling.  相似文献   

15.
The related Wnt-Frizzled(Fz)/beta-catenin and Fz/planar cell polarity (PCP) pathways are essential for the regulation of numerous developmental processes and are deregulated in many human diseases. Both pathways require members of the Dishevelled (Dsh or Dvl) family of cytoplasmic factors for signal transduction downstream of the Fz receptors. Dsh family members have been studied extensively, but their activation and regulation remains largely unknown. In particular, very little is known about how Dsh differentially signals to the two pathways. Recent work in cell culture has suggested that phosphorylation of Dsh by Casein Kinase I epsilon (CKIepsilon) may act as a molecular "switch," promoting Wnt/beta-catenin while inhibiting Fz/PCP signaling. Here, we demonstrate in vivo in Drosophila through a series of loss-of-function and coexpression assays that CKIepsilon acts positively for signaling in both pathways, rather than as a switch. Our data suggest that the kinase activity of CKIepsilon is required for peak levels of Wnt/beta-catenin signaling. In contrast, CKIepsilon is a mandatory signaling factor in the Fz/PCP pathway, possibly through a kinase-independent mechanism. Furthermore, we have identified the primary kinase target residue of CKIepsilon on Dsh. Thus, our data suggest that CKIepsilon modulates Wnt/beta-catenin and Fz/PCP signaling pathways via kinase-dependent and -independent mechanisms.  相似文献   

16.
The Frizzled (Fz; called here Fz1) and Fz2 receptors have distinct signaling specificities activating either the canonical Wnt/β-catenin pathway or Fz/planar cell polarity (PCP) signaling in Drosophila. The regulation of signaling specificity remains largely obscure. We show that Fz1 and Fz2 have different subcellular localizations in imaginal disc epithelia, with Fz1 localizing preferentially to apical junctional complexes, and Fz2 being evenly distributed basolaterally. The subcellular localization difference directly contributes to the signaling specificity outcome. Whereas apical localization favors Fz/PCP signaling, it interferes with canonical Wnt/β-catenin signaling. Receptor localization is mediated by sequences in the cytoplasmic tail of Fz2 that appear to block apical accumulation. Based on these data, we propose that subcellular Fz localization, through the association with other membrane proteins, is a critical aspect in regulating the signaling specificity within the Wnt/Fz signaling pathways.  相似文献   

17.
Weber U  Gault WJ  Olguin P  Serysheva E  Mlodzik M 《Genetics》2012,191(1):145-162
Planar cell polarity (PCP) is a common feature of many epithelia and epithelial organs. Although progress has been made in the dissection of molecular mechanisms regulating PCP, many questions remain. Here we describe a screen to identify novel PCP regulators in Drosophila. We employed mild gain-of-function (GOF) phenotypes of two cytoplasmic Frizzled (Fz)/PCP core components, Diego (Dgo) and Prickle (Pk), and screened these against the DrosDel genome-wide deficiency collection for dominant modifiers. Positive genomic regions were rescreened and narrowed down with smaller overlapping deficiencies from the Exelixis collection and RNAi-mediated knockdown applied to individual genes. This approach isolated new regulators of PCP, which were confirmed with loss-of-function analyses displaying PCP defects in the eye and/or wing. Furthermore, knockdown of a subset was also sensitive to dgo dosage or dominantly modified a dishevelled (dsh) GOF phenotype, supporting a role in Fz/PCP-mediated polarity establishment. Among the new "PCP" genes we identified several kinases, enzymes required for lipid modification, scaffolding proteins, and genes involved in substrate modification and/or degradation. Interestingly, one of them is a member of the Meckel-Gruber syndrome factors, associated with human ciliopathies, suggesting an important role for cell polarity in nonciliated cells.  相似文献   

18.
Planar cell polarity (PCP) controls the orientation of cells within tissues and the polarized outgrowth of cellular appendages. So far, six PCP core proteins including the transmembrane proteins Frizzled (Fz), Strabismus (Stbm) and Flamingo (Fmi) have been identified. These proteins form asymmetric PCP domains at apical junctions of epithelial cells. Here, we demonstrate that VhaPRR, an accessory subunit of the proton pump V‐ATPase, directly interacts with the protocadherin Fmi through its extracellular domain. It also shows a striking co‐localization with PCP proteins during all pupal wing stages in Drosophila. This localization depends on intact PCP domains. Reversely, VhaPRR is required for stable PCP domains, identifying it as a novel PCP core protein. VhaPRR performs an additional role in vesicular acidification as well as endolysosomal sorting and degradation. Membrane proteins, such as E‐Cadherin and the Notch receptor, accumulate at the surface and in intracellular vesicles of cells mutant for VhaPRR. This trafficking defect is shared by other V‐ATPase subunits. By contrast, the V‐ATPase does not seem to have a direct role in PCP regulation. Together, our results suggest two roles for VhaPRR, one for PCP and another in endosomal trafficking. This dual function establishes VhaPRR as a key factor in epithelial morphogenesis.  相似文献   

19.
Wnt signaling through frizzled (Fz) receptors plays key roles in just about every developmental system that has been studied. Several Wnt-Fz signaling pathways have been identified including the Wnt/planar cell polarity (PCP) pathway. PCP signaling is crucial for many developmental processes that require major cytoskeletal rearrangements. Downstream of Fz, PCP signaling is thought to involve the GTPases, Rho, Rac and Cdc42 and regulation of the JNK cascade. Here we report on the localization of these GTPases and JNK in the lens and assess their involvement in the cytoskeletal reorganisation that is a key element of FGF-induced lens fiber cell differentiation.  相似文献   

20.
Planar cell polarity (PCP) signaling controls the global orientation of surface structures, such as hairs and bristles, in both vertebrates and invertebrates. In Frizzled6 -/- (Fz6 -/-) mice, hair follicle orientations on the head and back are nearly random at birth, but reorient during early postnatal development to eventually generate a nearly parallel anterior-to-posterior array. We report the identification of a naturally occurring exon 5 deletion in Astrotactin2 (Astn2) that acts as a recessive genetic modifier of the Fz6 -/- hair patterning phenotype. A genetically engineered Astn2 exon 5 deletion recapitulates the modifier phenotype. In Fz6 -/- ;Astn2 ex5del/del mice, hair orientation on the back is subtly biased from posterior-to-anterior, leading to a 180-degree orientation reversal in mature mice. These experiments suggest that Astn2, an endosomal membrane protein, modulates PCP signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号