首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electric response of a back photoreaction in the bacteriorhodopsin photocycle was investigated. The proton pumping activity of green flash excited bacteriorhodopsin stops if the M412 form is illuminated by blue light (Karvaly and Dancsházy, 1977). In the present work a fast negative displacement current signal was measured in an oriented membrane suspension system, indicative of back movement of protons from M412 to BR570. Quantitative evaluation of the data shows that there are at least two steps in the back reaction, with different rate constants. The temperature dependence of the rate constants show simple linear Arrhenius behavior between 5 degree and 40 degree C. The rate constants were slower by a factor of 1.8 in D2O suspension. The relevance of the protein electric response signals (PERS) observed in this paper to the early receptor potential is discussed.  相似文献   

2.
Z Tokaji  Z Dancsházy 《FEBS letters》1991,281(1-2):170-172
The relative weight of the slowly decaying M intermediate of the photocycle of bacteriorhodopsin increases upon increasing the energy density of the short (10 ns) actinic laser pulse. Moreover, when a pre-exciting flash is applied to the BR sample, the absolute amplitude of the Ms is higher in the signal induced by a second flash, applied with a delay from 100 microseconds to 100 ms. These facts together prove that either the leftover BR ground-state population becomes different due to the pre-excitation, or there is a cooperative interaction between the BR molecules.  相似文献   

3.
Structural changes are central to the mechanism of light-driven proton transport by bacteriorhodopsin, a seven-helix membrane protein. The main intermediate formed upon light absorption is M, which occurs between the proton release and uptake steps of the photocycle. To investigate the structure of the M intermediate, we have carried out electron diffraction studies with two-dimensional crystals of wild-type bacteriorhodopsin and the Asp96-->Gly mutant. The M intermediate was trapped by rapidly freezing the crystals in liquid ethane following illumination with a xenon flash lamp at 5 and 25 degrees C. Here, we present 3.5 A resolution Fourier projection maps of the differences between the M intermediate and the ground state of bacteriorhodopsin. The most prominent structural changes are observed in the vicinity of helices F and G and are localized to the cytoplasmic half of the membrane.  相似文献   

4.
Methylation of the nonactive site lysines of bacteriorhodopsin to form permethylated bacteriorhodopsin does not interfere with the formation of the short wavelength intermediate M412 or light-induced proton release/uptake. The absorption spectrum is similar to that of the native bacteriorhodopsin. However, additional monomethylation of the active site lysine of bacteriorhodopsin causes a red shift of the absorption maximum from 568 nm in light-adapted bacteriorhodopsin [BR] to 630 nm. The photochemistry of active-site methylated BR does not proceed beyond the L-photointermediate. In particular, the photointermediate corresponding to M412 does not form, and there is no proton pumping. Moreover, there is no tyrosine deprotonation. Thus, the formation of an M-type photointermediate is required for proton pumping by BR.  相似文献   

5.
Electric field induced pH changes of purple membrane suspensions were investigated in the pH range from 4.1 to 7.6 by measuring the absorbance change of pH indicators. In connection with the photocycle and proton pump ability, three different states of bacteriorhodopsin were used: (1) the native purple bacteriorhodopsin (magnesium and calcium ions are bound, the M intermediate exists in the photocycle and protons are pumped), (2) the cation-depleted blue bacteriorhodopsin (no M intermediate), and (3) the regenerated purple bacteriorhodopsin which is produced either by raising the pH or by adding magnesium ions (the M intermediate exists). In the native purple bacteriorhodopsin there are, at least, two types of proton binding sites: one releases protons and the other takes up protons in the presence of the electric field. On the other hand, blue bacteriorhodopsin and the regenerated purple bacteriorhodopsin (pH increase) show neither proton release nor proton uptake. When magnesium ions are added to the suspensions; the field-induced pH change is observed again. Thus, the stability of proton binding depends strongly on the state of bacteriorhodopsin and differences in proton binding are likely to be related to differences in proton pump activity. Furthermore, it is suggested that the appearance of the M intermediate and proton pumping are not necessarily related.  相似文献   

6.
酶切菌紫质(bR)C端对紫膜光循环和质子泵效率的影响   总被引:4,自引:3,他引:1  
本文研究紫膜悬浮液经低剂量木瓜蛋酶处理去掉菌紫质(Bacteriorhodopsin简写bR)分子C-末端后。其光循环产物和质子泵效率的变化。实验发现经酶切后,M_(412)产物中慢衰减组份M_(412)降低了20%,O_(640)降低了50%,而质子泵效率降低了70%。双光脉冲实验表明酶解作用并不影响光循环周期。这些事实说明了去C-端所引起的质子泵效率降低,不是通过光循环的途径而产生的。介质中离子强度对正常紫膜和酶解紫膜的质子泵效率有明显不同的影响 说明了C端在不同盐浓度中的构象对质子泵行为有很重要的作用。  相似文献   

7.
All six available lysine residues in bacteriorhodopsin were amidinated with dimethyl-3,3'-dithiobispropionimidate, which is a crosslinking agent. The photocycle was studied by measuring light absorption and electric signals. The data show an essential change in the photocycle: instead of single components, the rise of the signal due to the M intermediate can be decomposed into two components, and the decay into three. The life-times and the intensities of these components and in general the proton pumping activity of bacteriorhodopsin depend only negligibly upon pH. Changes upon removing the crosslinks are not significantly different from those in the crosslinked samples. The lysine residues therefore may not be considered of primary importance in proton translocation.  相似文献   

8.
First, halorhodopsin is capable of pumping protons after illumination with greenand blue light in the same direction as chloride. Second, mutated bacteriorhodopsin where the proton acceptor Asp85 and the proton donor Asp96 are replaced by Asn showed proton pump activity after illumination with blue light in the same direction as wildtype after green light illumination. These results can be explained by and are discussed in light of our new hypothesis: structural changes in either molecule lead to a change in ion affinity and accessibility for determining the vectoriality of the transport through the two proteins.  相似文献   

9.
Proton pumping by bacteriorhodopsin and charge-compensating ion movement can both and simultaneously behave as the rate-limiting step in light-driven proton uptake into bacteriorhodopsin liposomes. This apparently excessive control exerted on the net proton influx is possible because of the negative (-1) 'control coefficient' of the net proton influx with respect to the proton leaks. Furthermore, the property of bacteriorhodopsin that it is inhibited by the membrane potential is responsible for the transfer of part of the control on the net proton influx from the first, irreversible, step in the pathway (i.e. bacteriorhodopsin) to the second, reversible, step (i.e., charge-compensating ion movement).  相似文献   

10.
Maximum of the M intermediate difference spectrum in the wild-type Halobacterium salinarium purple membrane is localized at 405-406 nm under conditions favoring accumulation of the M(N) intermediate (6 M guanidine chloride, pH 9.6), whereas immediately after laser flash the maximum is localized at 412 nm. The maximum is also localized at 412 nm 0.1 msec after the flash in the absence of guanidine chloride at pH 11.3. Within several milliseconds the maximum is shifted to short-wavelength region by 5-6 nm. This shift is similar to that in the D96N mutant which accompanies the M(N) (M(open)) intermediate formation. The main two differences are: 1) the rate of the shift is slower in the wild-type bacteriorhodopsin, and is similar to the rate of the M to N intermediate transition (t1/2 approximately 2 msec); 2) the shift in the wild-type bacteriorhodopsin is observed at alkaline pH values which are higher than pK of the Schiff base (approximately 10.8 at 1 M NaCl) in the N intermediate with the deprotonated Asp-96. Thus, the M(N) (M(open)) intermediate with open water-permeable inward proton channel is observed only at high pH, when the Schiff base and Asp-96 are deprotonated. The data confirmed our earlier conclusion that the M intermediate observed at lower pH has the closed inward proton channel.  相似文献   

11.
Photoelectric properties of bacteriorhodopsin incorporated into a bimolecular lipid membrane were investigated with special regard to the mechanism of photoelectric field generation. It was shown that besides its proton pump and electric generator functions bacteriorhodopsin works as a possible molecular regulator of the light-induced membrane potential. When a bimolecular lipid membrane containing bacteriorhodopsin is continuously illuminated in its main visible absorption band, and afterwards by superimposed blue light matching the absorption band of the long-living photobleached bacteriorhodopsin (M412) as well, the latter either enhances or decreases the steady-state photoresponse, depending upon the intensity of the green light. Thus, the additional blue-light illumination tends to cause the resultant photoelectric membrane potential to become stabilized. Two alternative schemes are tentatively proposed for the photochemical cycle of bacteriorhodopsin whereby blue light can control photovoltage generation. A kinetic model of the proton pump and the regulation of the photoelectric membrane potential is presented. This model fits all the experimental findings, even quantitatively. From the model some kinetic and physical parameters of this light-driven pump could be determined.  相似文献   

12.
Measuring the light-density (fluence) dependence of proton release from flash excited bacteriorhodopsin with two independent methods we found that the lifetime of proton release increases and the proton pumping activity, defined as a number of protons per number of photocycle, decreases with increasing fluence. An interpretation of these results, based on bending of purple membrane and electrical interaction among the proton release groups of bacteriorhodopsin trimer, is presented.  相似文献   

13.
X-ray and electron diffraction studies of specific reaction intermediates, or reaction intermediate analogues, have produced a consistent picture of the structural mechanism of light-driven proton pumping by bacteriorhodopsin. Of central importance within this picture is the structure of the L-intermediate, which follows the retinal all-trans to 13-cis photoisomerization step of the K-intermediate and sets the stage for the primary proton transfer event from the positively charged Schiff base to the negatively charged Asp-85. Here we report the structural changes in bacteriorhodopsin following red light illumination at 150 K. Single crystal microspectrophotometry showed that only the L-intermediate is populated in three-dimensional crystals under these conditions. The experimental difference Fourier electron density map and refined crystallographic structure were consistent with those previously presented (Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2000) Nature 406, 645-648; Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2001) Photochem. Photobiol. 74, 794-804). Based on the refined crystallographic structures, molecular dynamic simulations were used to examine the influence of the conformational change of the protein that is associated with the K-to-L transition on retinal dynamics. Implications regarding the structural mechanism for proton pumping by bacteriorhodopsin are discussed.  相似文献   

14.
The retinal analog 13-desmethyl-13-iodoretinal (13-iodoretinal) was newly synthesized and incorporated into apomembranes to reconstitute bacteriorhodopsin analog 13-I-bR. The absorption maximum was 598 nm and 97% of the chromophore was an all-trans isomer in the dark- and light-adapted state. Upon flash illumination, 13-I-bR underwent a transient spectral change in which a shorter wavelength intermediate (lambda(max) = 426 nm) similar to the M species of the native bR developed. Also, 13-I-bR showed light-induced proton pumping with rates and extents comparable to those seen in the native bR. The ultraviolet circular dichroism (CD) spectrum originating from the aromatic groups was different from that of the native bR, indicating that the substituted bulky iodine atom strongly interacts with neighboring amino acids. A projection difference Fourier map showed the labeled iodine was in the vicinity of helix C. 13-I-bR is an advantageous specimen for kinetic investigations of light-induced structural changes associated with the proton pumping cycle by x-ray diffraction.  相似文献   

15.
Zhang J  Yamazaki Y  Hikake M  Murakami M  Ihara K  Kouyama T 《Proteins》2012,80(10):2384-2396
The lifetime of the O intermediate of bacteriorhodopsin (BR) is extended by a factor of ~250 in the Leu93‐to‐Ala mutant (BR_L93A). To clarify the structural changes occurring in the last stage of the proton pumping cycle of BR, we crystallized BR_L93A into a hexagonal P622 crystal. Diffraction data from the unphotolyzed state showed that the deletion of three carbon atoms from Leu93 is compensated by the insertion of four water molecules in the cytoplasmic vicinity of retinal. This insertion of water is suggested to be responsible for the blue‐shifted λmax (540 nm) of the mutant. A long‐lived substate of O with a red‐shifted λmax (~565 nm) was trapped when the crystal of BR_L93A was flash‐cooled after illumination with green light. This substate (Oslow) bears considerable similarity to the M intermediate of native BR; that is, it commonly shows deformation of helix C and the FG loop, downward orientation of the side chain of Arg82, and disruption of the Glu194/Glu204 pair. In Oslow, however, the main chain of Lys216 is less distorted and retinal takes on the 13‐cis/15‐syn configuration. Another significant difference is seen in the pH dependence of the structure of the proton release group, the pKa value of which is suggested to be much lower in Oslow than in M. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The photocycle of bacteriorhodopsin (BR) was studied in the 0.3 microsecond to 10 s time interval after excitation, using a wide range of actinic light intensities (10 ns half-duration, 0.06-60 mJ/cm2), at neutral and alkaline pH values. The relative weights of the rapidly and the slowly decaying components of the M intermediate (Mf and M(s), respectively) and the yield of the third millisecond component, N(R,P), are the function of the exciting light intensity (density), while their lifetimes are not. The relative weight of M(s) is found to be a linear function of the portion of the BR molecules undergoing the photocycle. This suggests the existence of a cooperative interaction of the BR molecules arranged in the crystalline purple membrane sheets. Another source of M(s) is also found, which results a nonvanishing relative weight of M(s) even at very weak actinic light density values. The explanation for this may be a branching, or the heterogeneity of BR itself or with its environment. It is shown that the relative weights of the rising and decaying components of the M form(s) do not correlate directly with each other.  相似文献   

17.
Structural changes in the proton pumping cycle of wild-type bacteriorhodopsin were investigated by using a 3D crystal (space group P622)prepared by the membrane fusion method. Protein-protein contacts in the crystal elongate the lifetime of the M intermediate by a factor of approximately 100,allowing high levels of the M intermediate to accumulate under continuous illumination. When the M intermediate generated at room temperature was exposed to a low flux of X-rays (approximately 10(14) photons/mm2), this yellow intermediate was converted into a blue species having an absorption maximum at 650 nm. This color change is suggested to accompany a configuration change in the retinal-Lys216 chain. The true conformational change associated with formation of the M intermediate was analyzed by taking the X-radiation-induced structural change into account. Our result indicates that, upon formation of the M intermediate, helix G move stowards the extra-cellular side by, on average, 0.5 angstroms. This movement is coupled with several reactions occurring at distal sites in the protein: (1) reorientation of the side-chain of Leu93 contacting the C13 methyl group of retinal, which is accompanied by detachment of a water molecule from the Schiff base; (2) a significant distortion in the F-G loop, triggering destruction of a hydrogen bonding interaction between a pair of glutamate groups (Glu194 and Glu204); (3) formation of a salt bridge between the carboxylate group of Glu204 and the guanidinium ion of Arg82, which is accompanied by a large distortion in the extra-cellular half of helix C; (4)noticeable movements of the AB loop and the cytoplasmic end of helix B. But, no appreciable change is induced in the peptide backbone of helices A,D, E and F. These structural changes are discussed from the viewpoint of translocation of water molecules.  相似文献   

18.
Purified nicotinamide-nucleotide transhydrogenase from beef heart mitochondria was co-reconstituted with bacteriorhodopsin to from transhydrogenase-bacteriorhodopsin vesicles that catalyze a 20-fold light-dependent and uncoupler-sensitive stimulation of the reduction of NADP+ and NADP+ analogs by NADH and a 50-fold shift of the nicotinamide nucleotide ratio. In the presence of light, the transhydrogenase-bacteriorhodopsin vesicles catalyzed a pronounced light intensity-dependent inward proton pumping as indicated by a pH shift of the medium. As indicated by pH shifts, proton pumping by the bacteriorhodopsin essentially paralleled the light-driven transhydrogenase. Addition of valinomycin increased the pH shift twice with a concomitant 50% inhibition of the light-driven transhydrogenase, whereas nigericin inhibited the pH shift completely and the light-driven transhydrogenase partially. Taken together, these results suggest that transhydrogenase and bacteriorhodopsin interact through a delocalized proton-motive force. Possible partial reactions of transhydrogenase were investigated with transhydrogenase-bacteriorhodopsin vesicles energized by light. Reduction of oxidized 3-acetylpyridine adenine dinucleotide by NADH, previously claimed to represent partial reactions, was found to require NADPH. Similarly, reduction of thio-NADP+ by NADPH required NADH. It is concluded that these reactions do not represent partial reactions.  相似文献   

19.
The cell membrane of Halobacterium halobium (H. halobium) contains the proton-pump bacteriorhodopsin, which generates a light-driven transmembrane protonmotive force. The interaction of the bacteriorhodopsin photocycle with the electric potential component of the protonmotive force has been investigated. H. halobium cell envelope vesicles have been prepared by sonication and further purified by ultracentrifugation on Ficoll/NaCl/CsCl density gradients. Under continuous illumination (550 +/- 50 nm) varied from 0 to 40 mW cm-2, the vesicles maintain a membrane potential of 0 to -100 mV. The membrane potential was measured by flow dialysis of 3H-TPMP+ uptake and could be abolished by the uncoupler carbonylcyanide-m-chlorophenylhydrazone. Time-resolved absorption spectroscopy was used to measure the decay kinetics of the M photocycle intermediate, which was initiated by a weak laser flash (588 nm), while the vesicles were continuously illuminated as above. The M decay kinetics were fitted with two exponential decays by a computer deconvolution program. The faster decaying form decreases in amplitude (70 to 10% of the total) and the slower decaying form increases in amplitude and lifetime (23 to 42 ms) as the background light intensity increases. Although any correlation between the membrane potential and the bacteriorhodopsin photocycle M-forms is complex, the present data will allow specific tests of the physical mechanism for this interaction to be designed and conducted.  相似文献   

20.
C Ganea  C Gergely  K Ludmann    G Váró 《Biophysical journal》1997,73(5):2718-2725
The changes in the photocycle of the wild type and several mutant bacteriorhodopsin (D96N, E204Q, and D212N) were studied on dried samples, at relative humidities of 100% and 50%. Samples were prepared from suspensions at pH approximately 5 and at pH approximately 9. Intermediate M with unprotonated Schiff base was observed at the lower humidity, even in the case where the photocycle in suspension did not contain this intermediate (mutant D212N, high pH). The photocycle of the dried sample stopped at intermediate M1 in the extracellular conformation; conformation change, switching the accessibility of the Schiff base to the cytoplasmic side, and proton transport did not occur. The photocycle decayed slowly by dissipating the absorbed energy of the photon, and the protein returned to its initial bacteriorhodopsin state, through several M1-like substates. These substates presumably reflect different paths of the proton back to the Schiff base, as a consequence of the bacteriorhodopsin adopting different conformations by stiffening on dehydration. All intermediates requiring conformational change were hindered in the dried form. The concentration of intermediate L, which appears after isomerization of the retinal from all-trans to 13-cis, during local relaxation of the protein, was unusually low in dried samples. The lack of intermediates N and O demonstrated that the M state did not undergo a change from the extracellular to the cytoplasmic conformation (M1 to M2 transition), as already indicated by Fourier transform infrared spectroscopy, quasielastic incoherent neutron scattering, and electric signal measurements described in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号