首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shang L  Yue L  Hunter E 《Journal of virology》2008,82(11):5417-5428
The membrane-spanning domain (MSD) of the human immunodeficiency virus type 1 (HIV-1) gp41 glycoprotein is critical for its biological activity. Previous C-terminal truncation studies have predicted an almost invariant core structure of 12 amino acid residues flanked by basic amino acids in the HIV-1 MSD that function to anchor the glycoprotein in the lipid bilayer. To further understand the role of specific amino acids within the MSD core, we initially replaced the core region with 12 leucine residues and then constructed recovery-of-function mutants in which specific amino acid residues (including a GGXXG motif) were reintroduced. We show here that conservation of the MSD core sequence is not required for normal expression, processing, intracellular transport, and incorporation into virions of the envelope glycoprotein (Env). However, the amino acid composition of the MSD core does influence the ability of Env to mediate cell-cell fusion and plays a critical role in the infectivity of HIV-1. Replacement of conserved amino acid residues with leucine blocked virus-to-cell fusion and subsequent viral entry into target cells. This restriction could not be released by C-terminal truncation of the gp41 glycoprotein. These studies imply that the highly conserved core residues of the HIV Env MSD, in addition to serving as a membrane anchor, play an important role in mediating membrane fusion during viral entry.  相似文献   

2.
Many retroviruses, including the human and simian immunodeficiency viruses, contain a leucine zipper-like repeat in a highly conserved region of the external domain of the transmembrane (TM) glycoprotein. This region has been postulated to play a role in stabilizing the oligomeric form of these molecules. To determine what role this region might play in envelope structure and function, several mutations were engineered into the middle isoleucine of the leucine zipper-like repeat of the human immunodeficiency virus type 1 (HIV-1) TM protein. A phenotypic analysis of these mutants demonstrated that conservative mutations (Ile to Val or Leu) did not block the ability of the viral glycoprotein to mediate cell-cell fusion or affect virus infectivity. In contrast, each of the other mutations, except for the Ile-to-Ala change, completely inhibited the ability of the glycoprotein to fuse HeLa-T4 cells and of mutant virions to infect H9 cells. The alanine mutation produced an intermediate phenotype in which both cell fusion and infectivity were significantly reduced. Thus, the biological activity of the glycoprotein titrates with the hydrophobicity of the residue in this position. None of the mutations affected the synthesis, oligomer formation, transport, or processing of the HIV glycoprotein complex. Although these results do not rule out a role for the leucine zipper region in glycoprotein oligomerization, they clearly point to a critical role for it in a post-CD4 binding step in HIV membrane fusion and virus entry.  相似文献   

3.
The charged amino acids near or within the membrane-spanning region of the human immunodeficiency virus type 1 gp41 envelope glycoprotein were altered. Two mutants were defective for syncytium formation and virus replication even though levels of envelope glycoproteins on the cell or virion surface and CD4 binding were comparable to those of the wild-type proteins. Thus, in addition to anchoring the envelope glycoproteins, sequences proximal to the membrane-spanning gp41 region are important for the membrane fusion process.  相似文献   

4.
Sulfation is a posttranslational modification of proteins which occurs on either the tyrosine residues or the carbohydrate moieties of some glycoproteins. In the case of secretory proteins, sulfation has been hypothesized to act as a signal for export from the cell. We have shown that the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein precursor (gp160) as well as the surface (gp120) and transmembrane (gp41) subunits can be specifically labelled with 35SO42-. Sulfated HIV-1 envelope glycoproteins were identified in H9 cells infected with the IIIB isolate of HIV-1 and in the cell lysates and culture media of cells infected with vaccinia virus recombinants expressing a full-length or truncated, secreted form of the HIV-1 gp160 gene. N-glycosidase F digestion of 35SO4(2-)-labelled envelope proteins removed virtually all radiolabel from gp160, gp120, and gp41, indicating that sulfate was linked to the carbohydrate chains of the glycoprotein. The 35SO42-label was at least partially resistant to endoglycosidase H digestion, indicating that some sulfate was linked to complex carbohydrates. Brefeldin A, a compound that inhibits the endoplasmic reticulum to Golgi transport of glycoproteins, was found to inhibit the sulfation of the envelope glycoproteins. Envelope glycoproteins synthesized in cells treated with chlorate failed to incorporate 35SO42-. However, HIV glycoproteins were still secreted from cells in the presence of chlorate, indicating that sulfation is not a requirement for secretion of envelope glycoproteins. Sulfation of HIV-2 and simian immunodeficiency virus envelope glycoproteins has also been demonstrated by using vaccinia virus-based expression systems. Sulfation is a major determinant of negative charge and could play a role in biological functions and antigenic properties of HIV glycoproteins.  相似文献   

5.
The functional unit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins is a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. The lability of intersubunit interactions has hindered the production and characterization of soluble, homogeneous envelope glycoprotein trimers. Here we report three modifications that stabilize soluble forms of HIV-1 envelope glycoprotein trimers: disruption of the proteolytic cleavage site between gp120 and gp41, introduction of cysteines that form intersubunit disulfide bonds, and addition of GCN4 trimeric helices. Characterization of these secreted glycoproteins by immunologic and biophysical methods indicates that these stable trimers retain structural integrity. The efficacy of the GCN4 sequences in stabilizing the trimers, the formation of intersubunit disulfide bonds between appropriately placed cysteines, and the ability of the trimers to interact with a helical, C-terminal gp41 peptide (DP178) support a model in which the N-terminal gp41 coiled coil exists in the envelope glycoprotein precursor and contributes to intersubunit interactions within the trimer. The availability of stable, soluble HIV-1 envelope glycoprotein trimers should expedite progress in understanding the structure and function of the virion envelope glycoprotein spikes.  相似文献   

6.
The membrane-spanning domain (MSD) of a number of retroviral transmembrane (TM) glycoproteins, including those from the human and simian immunodeficiency viruses (HIV and SIV), have been predicted to contain a charged arginine residue. The wild-type SIV TM glycoprotein is 354 amino acids long. The entire putative cytoplasmic domain of SIV (amino acids 193 to 354) is dispensable for virus replication in vitro, and such truncation-containing viruses are capable of reaching wild-type titers after a short delay. We show here that further truncation of eight additional amino acids to TM185 results in a protein that lacks fusogenicity but is, nevertheless, efficiently incorporated into budding virions. By analyzing a series of nonsense mutations between amino acids 193 and 185 in Env expression vectors and in the SIVmac239 proviral clone, a region of the SIV TM that contains the minimum requirement for glycoprotein-mediated cell-to-cell fusion and that for virus replication was identified. Virus entry and infectivity were evident in truncations to a minimum of 189 amino acids, whereas cell-cell fusion was observed for a protein of only 187 amino acids. Glycoprotein was efficiently incorporated into budding virions in truncations up to 185 amino acids, indicating that such proteins are membrane anchored and are transported to the cell surface. However, truncation of the TM to 180 amino acids resulted in a protein that displays a transport defect and may be retained in the endoplasmic reticulum. Based on our analyses of these mutants, an alternative model for the MSD of SIV is proposed. Our model suggests that membrane-imbedded charged residues can be neutralized by side-chain interactions with lipid polar head groups. As a consequence, the membrane-spanning region can be reduced by more than a helical turn. This new model accounts for the ability of truncations within the predicted MSD to remain membrane anchored and maintain biological activity.  相似文献   

7.
We have introduced amino acid substitutions into two regions of the extracellular domain of the vesicular stomatitis virus (VSV) glycoprotein (G protein) and examined the effect of these mutations on protein transport, low-pH-induced stability of G protein oligomers, and membrane fusion activity. We suggested previously that the region between amino acids 118 and 139 may be important for the membrane fusion activity of G protein, on the basis of the characterization of a fusion-defective G protein mutant (M. A. Whitt, P. Zagouras, B. Crise, and J. K. Rose, J. Virol. 64:4907-4913, 1990). It has also been postulated by others that this region as well as the region between amino acids 181 and 212 may constitute putative internal fusion domains of VSV G protein. In this report, we show that three different amino acids substitutions between residues 118 and 139 (G-124-->E, P-127-->D, and A-133-->K) either altered or abolished low-pH-dependent membrane fusion activity. In contrast, substitutions between residues 192 and 212 resulted either in G proteins that had wild-type fusion activity or in mutant proteins in which the mutation prevented transport of G protein to the cell surface. Two of the substitutions between residues 118 and 139 (G-124-->E and P-127-->D) resulted in G proteins that were fusion defective at pH 5.7, although syncytia were observed after cells were treated with fusion buffer at pH 5.5, albeit at levels significantly less than that induced by wild-type G protein. Interestingly, when either G-124-->E or P-127-->D was incorporated into tsO45 virions, the resulting particles were not infectious, presumably because the viral envelope was not able to fuse with the proper intracellular membrane. These results support the hypothesis that the region between amino acids 118 and 139 is important for the membrane fusion activity of VSV G protein and may constitute an internal fusion domain.  相似文献   

8.
Truncation of the human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) gp41 cytoplasmic tail (CT) can modulate the fusogenicity of the envelope glycoprotein (Env) on infected cells and virions. However, the CT domains involved and the underlying mechanism responsible for this "inside-out" regulation of Env function are unknown. HIV and SIV CTs are remarkably long and contain amphipathic alpha-helical domains (LLP1, LLP2, and LLP3) that likely interact with cellular membranes. Using a cell-cell fusion assay and a panel of HIV Envs with stop codons at various positions in the CT, we show that truncations of gp41 proximal to the most N-terminal alpha helix, LLP2, increase fusion efficiency and expose CD4-induced epitopes in the Env ectodomain. These effects were not seen with a truncation distal to this domain and before LLP1. Using a dye transfer assay to quantitate fusion kinetics, we found that these truncations produced a two- to fourfold increase in the rate of fusion. These results were observed for X4-, R5-, and dual-tropic Envs on CXCR4- and CCR5-expressing target cells and could not be explained by differences in Env surface expression. These findings suggest that distal to the membrane-spanning domain, an interaction of the gp41 LLP2 domain with the cell membrane restricts Env fusogenicity during Env processing. As with murine leukemia viruses, where cleavage of a membrane-interactive R peptide at the C terminus is required for Env to become fusogenic, this restriction of Env function may serve to protect virus-producing cells from the membrane-disruptive effects of the Env ectodomain.  相似文献   

9.
We investigated cell-cell fusion induced by the envelope glycoprotein of human immunodeficiency virus type 1 strain IIIB expressed on the surface of CHO cells. These cells formed syncytia when incubated together with CD4-positive human lymphoblastoid SupT1 cells or HeLa-CD4 cells but not when incubated with CD4-negative cell lines. A new assay for binding and fusion was developed by using fluorescent phospholipid analogs that were produced in SupT1 cells by metabolic incorporation of BODIPY-labeled fatty acids. Fusion occurred as early as 10 min after mixing of labeled SupT1 cells with unlabeled CHO-gp160 cells at 37 degrees C. When both the fluorescence assay and formation of syncytia were used, fusion of SupT1 and HeLa-CD4 cells with CHO-gp160 cells was observed only at temperatures above 25 degrees C, confirming recent observations (Y.-K. Fu, T.K. Hart, Z.L. Jonak, and P.J. Bugelski, J. Virol. 67:3818-3825, 1993). This temperature dependence was not observed with influenza virus-induced cell-cell fusion, which was quantitatively similar at both 20 and 37 degrees C, indicating that cell-cell fusion in general is not temperature dependent in this range. gp120-CD4-specific cell-cell binding was found over the entire 0 to 37 degrees C range but increased markedly above 25 degrees C. The enhanced binding and fusion were reduced by cytochalasins B and D. Binding of soluble gp120 to CD4-expressing cells was equivalent at 37 and 16 degrees C. Together, these data indicate that during gp120-gp41-induced syncytium formation, initial cell-cell binding is followed by a cytoskeleton-dependent increase in the number of gp120-CD4 complexes, leading to an increase in the avidity of cell-cell binding. The increased number of gp120-CD4 complexes is required for fusion, which suggests that the formation of a fusion complex consisting of multiple CD4 and gp120-gp41 molecules is a step in the fusion mechanism.  相似文献   

10.
The fusion kinetics of cells expressing the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein with CD4 target cells was continuously monitored by image-enhanced Nomarski differential interference contrast optics. The analysis of the videotape recordings showed that (i) cells made contact relatively rapidly (within minutes), in many cases by using microspikes to "touch" and adhere to adjoining cells; (ii) the adhered cells fused after a relatively long waiting period, which varied from 15 min to hours; (iii) the morphological changes after membrane fusion, which led to disappearance of the interface separating the two cells, were rapid (less than 1 min); and (iv) the process of syncytium formation involved subsequent fusion with other cells and not simultaneous fusion of many cells. To measure the kinetics of early stages of cell fusion, we used the recently developed very stable membrane-soluble dye, PKH26, which redistributes between labeled and unlabeled membranes after fusion but does not exchange spontaneously between membranes for prolonged periods. We found that photoactivation of this dye by illumination with green light inhibits fusion of cell membranes as indicated by the lack of dye transfer from the labeled HIV-1 envelope-expressing cells to unlabeled CD4 cells. The inhibitory effect was localized in space and time, which allowed us to develop a new assay for measuring the kinetics of membrane fusion by illuminating the cell mixture at different times after coculture. This assay has also been used to monitor the fusion kinetics of HIV-1 and recombinant vaccinia virus. The photoactivation of nonexchangeable membrane-soluble fluorescent dyes may be useful for development of new assays for measuring the kinetics of membrane fusion and could also be important in designing new antiviral approaches.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells requires folding of two heptad-repeat regions (N-HR and C-HR) of gp41 into a trimer of N-HR and C-HR hairpins, which brings viral and target cell membranes together to facilitate membrane fusion. Peptides corresponding to the N-HR and C-HR of gp41 are potent inhibitors of HIV infection. Here we report new findings on the mechanism of inhibition of a N-HR peptide and compare these data with inhibition by a C-HR peptide. Using intact envelope glycoprotein (Env) under fusogenic conditions, we show that the N-HR peptide preferentially binds receptor-activated Env and that CD4 binding is sufficient for triggering conformational changes that allow the peptide to bind Env, results similar to those seen with the C-HR peptide. However, activation by both CD4 and chemokine receptors further enhances Env binding by both peptides. We also show that a nonconservative mutation in the N-HR of gp41 abolishes C-HR peptide but not N-HR peptide binding to gp41. These results indicate that there are two distinct sites in receptor-activated Env that are potential targets for drug or vaccine development.  相似文献   

12.
The envelope glycoprotein of the human immunodeficiency virus type 2 (HIV-2) is synthesized as a polyprotein precursor which is proteolytically processed to produce the mature surface and transmembrane envelope glycoproteins. The processed envelope glycoprotein species are responsible for the fusion between the viral envelope and the host cell membrane during the infection process. The envelope glycoprotein also induces syncytium formation between envelope-expressing cells and receptor-bearing cells. To characterize domains of the HIV-2 envelope glycoprotein involved in membrane fusion and in proteolytic processing, we introduced single amino acid mutations into the region of the HIV-2 surface glycoprotein corresponding to the principal neutralizing determinant (the V3 loop) of HIV-1, the putative HIV-2 envelope precursor-processing sequence, and the hydrophobic amino terminus of the HIV-2 transmembrane envelope glycoprotein. The effects of these mutations on syncytium formation, virus infectivity, envelope expression, envelope processing, and CD4 binding were analyzed. Our results suggest that the V3-like region of the HIV-2 surface glycoprotein and the hydrophobic amino terminus of the transmembrane glycoprotein are HIV-2 fusion domains and characterize the effects of mutations in the HIV-2 envelope glycoprotein precursor-processing sequence.  相似文献   

13.
Foamy viruses (FVs) are highly fusogenic, and their replication induces massive syncytium formation in infected cell cultures which is believed to be mediated by expression of the envelope (Env) protein. The FV Env is essential for virus particle egress. The unusually long putative membrane-spanning domain (MSD) of the transmembrane subunit carries dispersed charged amino acids and has an important function for particle envelopment. To better understand the capsid-envelope interaction and Env-mediated cell fusion, we generated a variety of FV MSD mutations. C-terminal deletions revealed the cytoplasmic domain to be dispensable but the full-length MSD to be required for fusogenic activity. The N-terminal 15 amino acids of the MSD were found to be sufficient for membrane anchorage and promotion of FV particle release. Expression of wild-type Env protein rarely induced syncytia due to intracellular retention. Coexpression with FV Gag-Pol resulted in particle export and a dramatic increase in fusion activity. A nonconservative mutation of K(959) in the middle of the putative MSD resulted in increased fusogenic activity of Env in the absence of Gag-Pol due to enhanced cell surface expression as well as structural changes in the mutant proteins. Coexpression with Gag-Pol resulted in a further increase in the fusion activity of mutant FV Env proteins. Our results suggest that an interaction between the viral capsid and Env is required for FV-induced giant-cell formation and that the positive charge in the MSD is an important determinant controlling intracellular transport and fusogenic activity of the FV Env protein.  相似文献   

14.
P A Ashorn  E A Berger    B Moss 《Journal of virology》1990,64(5):2149-2156
Human immunodeficiency virus (HIV) infects human cells by binding to surface CD4 molecules and directly fusing with the cell membrane. Although mouse cells expressing human CD4 bind HIV, they do not become infected, apparently because of a block in membrane fusion. To study this problem, we constructed a recombinant vaccinia virus that can infect and promote transient expression of full-length CD4 in mammalian cells. This virus, together with another vaccinia recombinant encoding biologically active HIV envelope glycoprotein gp160, allowed us to study CD4/gp160-mediated cell-cell fusion in a wide variety of human and nonhuman cells in the absence of other HIV proteins. By using syncytium formation assays in which a single cell type expressed both CD4 and gp160, we demonstrated membrane fusion in lymphoid and nonlymphoid human cells but not in any of the 23 tested nonhuman cell types, derived from African green monkey, baboon, rabbit, hamster, rat, or mouse. However, in mixing experiments with one cell type expressing CD4 and the other cell type expressing gp160, all of these nonhuman cells could form CD4/gp160-mediated syncytia when mixed with human cells; in 20 of 23 cases, membrane fusion occurred only if the CD4 molecule was expressed on the human cells whereas in the other three cases, CD4 could be expressed on either one of the fusing partners. Interestingly, in one mouse cell line, CD4-dependent syncytia formed without a human partner, but only if a C-terminally truncated form of the HIV envelope glycoprotein was employed. Our results indicate that nonhuman cells are intrinsically capable of undergoing CD4/gp160-mediated membrane fusion, but this fusion is usually prevented by the lack of helper or the presence of inhibitory factors in the nonhuman cell membranes.  相似文献   

15.
Fusion between cell and virus membranes mediated by gp41 initiates the life cycle of human immunodeficiency virus type 1. In contrast to the many studies that have elucidated the structure-function relationship of the ectodomain, the study of the membrane-spanning domain (MSD) has been rather limited. In particular, the role that the MSD's specific amino acid sequences may have in membrane fusion as well as other gp41 functions is not well understood. The MSD of gp41 contains well-conserved glycine residues that form the GXXXG motif (G, glycine; X, other amino acid residues), a motif often found at the helix-helix interface of membrane spanning alpha-helices. Here we examined the role that the specific amino acid sequence of the gp41 MSD has in gp41 function, particularly in membrane fusion, by making two types of MSD mutants: (i) glycine substitution mutants in which glycine residues of the MSD were mutated to alanine or leucine residues, and (ii) replacement mutants in which the entire MSD was replaced with one derived from glycophorin A or from vesicular stomatitis virus G. The substitution of glycines did not affect gp41 function. MSD-replacement mutants, however, showed severely impaired fusion activity. The assay using the Env expression vector revealed defects in membrane fusion after CD4 binding steps in the MSD-replacement mutants. In addition, the change in Env processing was noted for MSD-replacement mutants. These results suggest that the MSD of gp41 has a relatively wide but not unlimited tolerance for mutations and plays a critical role in membrane fusion as well as in other steps of Env biogenesis.  相似文献   

16.
Oligomerization of the human immunodeficiency virus type 1 envelope (env) glycoproteins is mediated by the ectodomain of the transmembrane glycoprotein gp41. We report that deletion of gp41 residues 550 to 561 resulted in gp41 sedimenting as a monomer in sucrose gradients, while the gp160 precursor sedimented as a mixture of monomers and oligomers. Deletion of the nearby residues 571 to 582 did not affect the oligomeric structure of gp41 or gp160, but deletion of both sequences resulted in monomeric gp41 and predominantly monomeric gp160. Deletion of residues 655 to 665, adjacent to the membrane-spanning sequence, partially dissociated the gp41 oligomer while not affecting the gp160 oligomeric structure. In contrast, deletion of residues 510 to 518 from the fusogenic hydrophobic N terminus of gp41 did not affect the env glycoprotein oligomeric structure. Even though the mutant gp160 and gp120 molecules were competent to bind CD4, the mutations impaired fusion function, gp41-gp120 association, and gp160 processing. Furthermore, deletion of residues 550 to 561 or 550 to 561 plus 571 to 582 modified the antigenic properties of the proximal residues 586 to 588 and the distal residues 634 to 664. Our results indicate that residues 550 to 561 are essential for maintaining the gp41 oligomeric structure but that this sequence and additional sequences contribute to the maintenance of gp160 oligomers. Residues 550 to 561 map to the N terminus of a putative amphipathic alpha-helix (residues 550 to 582), whereas residues 571 to 582 map to the C terminus of this sequence.  相似文献   

17.
Ye L  Bu Z  Vzorov A  Taylor D  Compans RW  Yang C 《Journal of virology》2004,78(24):13409-13419
The effects of two functional domains, the membrane-proximal YXXPhi motif and the membrane-distal inhibitory sequence in the long cytoplasmic tail of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env), on immunogenicity of the envelope protein were investigated. Genes with codons optimized for mammalian expression were synthesized for the HIV 89.6 Env and a truncated Env with 50 amino acids in the cytoplasmic domain to delete the membrane distal inhibitory sequence for surface expression. Additional genes were generated in which the tyrosine residue in the YXXPhi motif was changed into a serine. Pulse-chase radioactive labeling and immunoprecipitation studies indicated that both domains can mediate endocytosis of the HIV Env, and removal of both domains is required to enhance HIV Env protein surface stability. Analysis of immune responses induced by DNA immunization of mice showed that the DNA construct for the mutant Env exhibiting enhanced surface stability induced significantly higher levels of antibody responses against the HIV Env protein. Our results suggest that the HIV Env cytoplasmic domain may play important roles in virus infection and pathogenesis by modulating its immunogenicity.  相似文献   

18.
To investigate the glycoprotein determinants of viral cytopathology, we constructed chimeric env genes between a noncytopathic strain of human immunodeficiency virus type 2 (HIV-2), designated HIV-2/ST, and a highly fusogenic and cytopathic variant derived from this virus. Expression of the resulting chimeric glycoproteins indicated that efficient syncytium formation in the human T-cell line Sup T1 mapped to the C-terminal region of the transmembrane (TM) glycoprotein subunit. In this region, the wild-type and cytopathic ST glycoproteins differed by only four amino acids and by the presence of a premature termination codon in the cytopathic variant. Subsequent site-directed mutagenesis indicated that the cytoplasmic domain truncation was responsible for the enhanced fusion activity. This modification, however, increased the fusion activity of the glycoprotein only in Sup T1 cells (in which the ST variant arose) but not in Molt 4 clone 8 or peripheral blood mononuclear cells. These observations indicate that the length of the cytoplasmic domain of the HIV-2 glycoprotein modulates the fusion activity of the exterior glycoprotein complex in a cell-specific manner. Such adaptability appears to permit the emergence of fusogenic variants during HIV-2 passage in vitro and may also regulate viral growth or cytopathic effects in selected cell types during natural infection in vivo.  相似文献   

19.
The envelope glycoprotein of human immunodeficiency virus type 1 is synthesized as a precursor, gp160, that subsequently is cleaved to yield mature gp120 and gp41. In these studies, the gene encoding gp160 was mutagenized so as direct the synthesis of a truncated protein consisting of the extracellular domains of both gp120 and gp41. The variant protein, termed sgp160, consisted of 458 amino acids of gp120 and 172 amino acids of gp41. To facilitate protein purification, the normal polyglycoprotein processing site between gp120 and gp41 was deleted through the use of site-directed mutagenesis. This allowed for the synthesis of a molecule that could be purified by affinity chromatography, using acid elution, without dissociation of the gp120 polypeptide from the gp41 polypeptide. The conformation of the sgp160 variant appeared to be functionally relevant, as reflected by its ability to bind to CD4 with an affinity comparable to that of the variant rgp120. The structure of the sgp160-containing polypeptide differed from that of rgp120 in that it tended to form high-molecular-weight aggregates that could be dissociated to monomers and dimers in the presence of reducing agents. Antibodies against the sgp160 protein reacted with authentic virus-derived gp160, gp120, and gp41; neutralized viral infectivity; and inhibited the binding of rgp120 to CD4. Rabbit antibodies to the sgp160 protein differed from those raised against rgp120 in that they were enriched for populations that blocked CD4 binding but did not prevent human immunodeficiency virus type 1-induced syncytium formation.  相似文献   

20.
Changes were introduced into conserved amino acids within the ectodomain of the human immunodeficiency virus type 1 (HIV-1) gp41 transmembrane envelope glycoprotein. The effect of these changes on the structure and function of the HIV-1 envelope glycoproteins was examined. The gp41 glycoprotein contains an amino-terminal fusion peptide (residues 512 to 527) and a disulfide loop near the middle of the extracellular domain (residues 598 to 604). Mutations affecting the hydrophobic sequences between these two regions resulted in two phenotypes. Some changes in amino acids 528 to 562 resulted in a loss of the noncovalent association between gp41 and the gp120 exterior glycoprotein. Amino acid changes in other parts of the gp41 glycoprotein (residues 608 and 628) also resulted in subunit dissociation. Some changes affecting amino acids 568 to 596 resulted in envelope glycoproteins partially or completely defective in mediating membrane fusion. Syncytium formation was more sensitive than virus entry to these changes. Changes in several amino acids from 647 to 675 resulted in higher-than-wild-type syncytium-forming ability. One of these amino acid changes affecting tryptophan 666 resulted in escape from neutralization by an anti-gp41 human monoclonal antibody, 2F5. These results contribute to an understanding of the functional regions of the HIV-1 gp41 ectodomain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号