首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘畅  于涛  高战武  于达夫  蔺吉祥 《生态学报》2016,36(21):6786-6793
为明确燕麦幼苗对松嫩盐碱草地3种主要盐分Na Cl、Na HCO_3和Na_2CO_3的适应机制,设定不同浓度梯度(48—144 mmol/L)的胁迫处理液,测定燕麦幼苗的生长与生理指标变化。结果表明,尽管试验设定的Na Cl浓度并不影响幼苗的存活率,但在各组胁迫处理下,随着浓度的增加,燕麦幼苗的分蘖数、植株高度、茎叶与根系的生物量均呈下降趋势,下降幅度为Na_2CO_3Na HCO_3Na Cl。另外,与Na Cl胁迫相比,Na_2CO_3与Na HCO_3胁迫下茎叶与根中积累了更多的有毒Na~+,同时K~+下降幅度也更大,并且根系中含有更高的Na~+与更低的K~+以及更高的Na~+/K~+。在Na Cl胁迫下,燕麦幼苗积累大量的无机Cl~-和脯氨酸来维持细胞内的渗透与离子平衡,而Na HCO_3与Na_2CO_3胁迫造成了燕麦幼苗体内阴离子的亏缺,此时幼苗主要通过积累大量的有机酸和更多的脯氨酸来维持渗透与离子平衡。上述结果表明,碱性盐Na_2CO_3与Na HCO_3对植物的胁迫伤害程度大于中性盐Na Cl,并且Na_2CO_3的毒害效应最强,而燕麦幼苗对不同的盐分胁迫伤害也有会产生不同的生理适应策略。  相似文献   

2.
Summary Osmotic and specific ion effect are the most frequently mentioned mechanisms by which saline substrates reduce plant growth. However, the relative importance of osmotic and specific ion effect on plant growth seems to vary depending on the drought and/or salt tolerance of the plant under study. We studied the effects of several single salts of Na+ and Ca2+−NaCl, NaNO3, Na2SO4, NaHCO3, Na2CO3, and Ca(NO3)2—on the germination and root and coleoptile growth of two wheat (Triticum aestivum L.) cultivars, TAM W-101 and Sturdy, the former being more drought tolerant than the latter. The concentrations used were: 0, 0.02, 0.04, 0.08, 0.16, and 0.32 mol L−1. Significant two- and three-way interactions were observed between cultivar, kind of salt, and salt concentration for germination, growth of coleoptile and root, and root/coleoptile ratio. Salts differed significantly (P<0.001) in their effect on seed germination, coleoptile and root growth of both cultivars. Germination of TAM W-101 seeds was consistently more tolerant than that of Sturdy to NaCl, CaCl2, Ca(NO3)2, and NaHCO3 salts at concentrations of 0.02, 0.04, 0.08, 0.16 mol L−1. The osmotic potential, at which the germination of wheat seeds was reduced to 50% of that of the control, was different depending on the kind of salt used in the germination medium. NaCl at low concentrations (0.02 and 0.04 mol L−1) stimulated the germination of both wheat cultivars. At concentrations of 0.02 to 0.16 mol L−1, Ca2+ salts (CaCl2 and Ca(NO3)2) were consistently more inhibitory than the respective Na+ salts (NaCl and NaNO3) for germination of Sturdy. This did not consistently hold true for TAM W-101. Among the Na+ salts, NaCl was the least toxic and NaHCO3 and Na2CO3 were the most toxic for seed germination. Root and coleoptile (in both wheat cultivars) differed in their response to salts. This differential response of coleoptile and root to each salt resulted in seedlings with a wide range of root/coleoptile ratios. For example, the root/coleoptile ratio of cultivar TAM W-101 changed from 2.09 (in the control) to 3.77, 3.19, 2.8, 2.44, 1.31, 0.32, and 0.0 when subjected to 0.08 mol L−1 of Na2SO4, NaCl, CaCl2, NaNO3, Ca(NO3)2, NaHCO3, and Na2CO3, respectively. Na2CO3 at 0.08 mol L−1 inhibited root growth to such an extent that germinated wheat seeds contained coleoptile but no roots. The data indicate that, apart from the clear and more toxic effects of NaHCO3 and Na2CO3 and lesser toxic effect of NaCl on germination and seedling growth, any toxicity-ranking of other salts done at a given concentration and for a given tissue growth may not hold true for other salt concentrations, other tissues and/or other cultivars. The more drought-tolerant TAM W-101, when compared to the less drought tolerant Sturdy, showed higher tolerance (at most concentrations) to NaCl, CaCl2, Ca(NO3)2 and NaHCO3 during its seed germination and to Na2SO4 and CaCl2 for its root growth. This supports other reports that some drought-tolerant wheat cultivars are more tolerant to NaCl. In contrast, the coleoptile growth of drought-sensitive Sturdy was noticeably more tolerant to NaNO3, Ca(NO3)2 and NaHCO3 than that of drought-tolerant TAM W-101. Based on the above and the different root/coleoptile ratios observed in the presence of various salts, it is concluded that in these wheat cultivars: a) coleoptile and root tissues are differently sensitive to various salts, and b) at the germination stage, tolerance to certain salts is higher in the more drought-tolerant cultivar.  相似文献   

3.
Sorghum variety Longza 17 was used as the experimental organism in a study of the effects of different types of sodium salt (two neutral salts, NaCl and Na2SO4; and two alkaline salts, NaHCO3 and Na2CO3), at an equivalent Na+ concentration (100?mmol·L?1) on leaf growth parameters and PSII and PSI function by using the Fast Chlorophyll Fluorescence Induction Dynamics technique and 820?nm light reflectance curves. The results showed that at Na+ concentration of 100?mmol·L?1, different types of sodium salt stress significantly inhibited the growth of sorghum plants. Different types of sodium salt stress showed significant inhibition on the activities of PSII and PSI in sorghum leaves, the impact of different types of sodium salt on the activities of PSII and PSI in sorghum leaves was consistent, listed from greatest to least impact as Na2CO3 > NaHCO3 > Na2SO4 > NaCl. The effects of alkaline salt stress on the growth and photosynthetic properties of sorghum were greater than those under the neutral salt stress, therefore, in addition to considering the impact of Na+ concentration in the sorghum planting area, emphasis should also be given to the influence of the degree of alkalization, especially the higher alkalinity of Na2CO3.  相似文献   

4.
The influence of increasing salinity stress on plant growth, antioxidant enzymes and proline metabolism in two cultivars of Vigna radiata L. (cv. Pusa Bold and cv. CO 4) was investigated. Salt stress was imposed on 30-days-old cultivars with four different concentrations of NaCl (0, 100, 200 and 300 mM). The roots and shoots of CO 4 showed greater reduction in fresh weight, dry weight and water content when compared to Pusa Bold with increasing salt stress. Under salinity stress, the roots and shoots of CO 4 exhibited higher Na+: K+ ratio than Pusa Bold. The activities of reactive oxygen species (ROS) scavenging enzymes and reduced glutathione (GSH) concentration were found to be higher in the leaves of Pusa Bold than in CO 4, whereas oxidized glutathione (GSSG) concentration was found to be higher in the leaves of CO 4 compared to those in Pusa Bold. Our studies on oxidative damage in two Vigna cultivars showed lower levels of lipid peroxidation and H2O2 concentration in Pusa Bold than in CO 4 under salt stress conditions. High accumulation of proline and glycine betaine under salt stress was also observed in Pusa Bold when compared to CO 4. The activities of proline biosynthetic enzymes were significantly high in Pusa Bold. However, under salinity stress, Pusa Bold showed a greater decline in proline dehydrogenase (ProDH) activity compared to CO 4. Our data in this investigation demonstrate that oxidative stress plays a major role in salt-stressed Vigna cultivars and Pusa Bold has efficient antioxidative characteristics which could provide better protection against oxidative damage in leaves under salt-stressed conditions.  相似文献   

5.
牛叠肚幼苗对盐碱胁迫的生理响应及其耐盐阈值   总被引:1,自引:0,他引:1  
以盆栽牛叠肚组培苗为试材,比较研究了不同浓度中性盐(NaCl、Na2SO4)和碱性盐(NaHCO3、Na2CO3)胁迫对其生长和生理指标的影响。结果显示:(1)牛叠肚幼苗生长在碱性盐(NaHCO3、Na2CO3)处理下表现出"低促高抑"现象,而在中性盐(NaCl、Na2SO4)处理下均受到不同程度的抑制。(2)随着盐碱胁迫浓度的升高,牛叠肚叶片的相对电导率呈增加趋势,丙二醛(MDA)积累波动变化;Na2SO4和NaHCO3处理下二者之间的变化趋势相似,而NaCl和Na2CO3处理下二者之间变化趋势则不同。(3)牛叠肚叶片中超氧化物歧化酶(SOD)活性随胁迫浓度增加先升高后下降,而过氧化物酶(POD)活性呈先下降后升高趋势,说明牛叠肚主要通过SOD和POD的互补作用来降低氧化伤害。(4)以相对株高生长量下降50%为标准,求得牛叠肚幼苗对NaCl、Na2SO4、NaHCO3、Na2CO34种单盐的耐受阈值分别为85.18(0.50%,W/V)、40.77(0.58%,W/V)、171.00(1.44%,W/V)、114.20(1.21%,W/V)mmol·L-1。研究表明,各盐碱胁迫使牛叠肚幼苗的生长受到不同程度的抑制,但其在一定浓度范围内通过提高抗氧化酶(SOD、POD)活性来减轻盐碱伤害,维持植株的正常生理代谢;牛叠肚幼苗对碱性盐(NaHCO3、Na2CO3)的耐受能力强于中性盐(NaCl、Na2SO4)。  相似文献   

6.
Salinization and alkalization of soil are widespread environmental problem and the alkali stress is more destructive than the effects caused by salt stress. To compare the mechanism of salt and alkali stresses, a sunflower variety (Helianthus annuus L. cv. Baikuiza 6) was tested under saline or alkaline conditions by mixing two neutral salts (NaCl and Na2SO4) or two alkaline salts (NaHCO3 and Na2CO3). The results showed that saline conditions differed greatly from alkaline conditions in their threshold intensities where sunflower can germinate, survive and grow. Under saline conditions, the emergence time was delayed, and the emergence rate and seedling survival rate also decreased with increasing salinity. However, under alkaline conditions, the rate of seedling survival decreased sharply but the emergence time and emergence rate did not change. In addition, the damaging effects of alkali stress on growth and photosynthesis were more severe than those of saline. In shoots, the main inorganic osmolyte and cation was K+ rather than Na+; the primary organic osmolytes were organic acid and soluble sugar rather than proline. Organic acid, NO3 , and Cl (only under saline condition) were the main source of anion. In addition, the osmotic adjustment and ion balance differed among sunflower roots, stems, and leaves. In conclusion, saline and alkaline conditions are two different stress conditions and there are special responses to two stress conditions for sunflower.  相似文献   

7.
NaCl和Na2CO3胁迫对栓皮栎种子萌发及幼苗生长的影响   总被引:2,自引:0,他引:2  
为了阐明栓皮栎种子萌发期对盐碱胁迫的耐受性,研究了不同浓度(0、50、100、200和400 mmol/L)NaCl和Na2CO3胁迫对其种子萌发、生长、保护酶活性和有机渗透调节物质等的影响,结果表明:(1)盐碱胁迫对栓皮栎种子的萌发率和发芽指数均没有显著影响;随着Na+浓度的升高,NaCl和Na2CO3处理下的胚根长度、胚根生长速率、胚根鲜重均受到抑制,呈现下降趋势;活力指数和耐盐指数在NaCl胁迫下表现为较低浓度(50 mmol/L)促进,较高浓度(100,200,400 mmol/L)抑制,而在Na2CO3处理下则不断下降;相对盐害率在两种处理下均表现波动趋势。(2)通过建立活力指数、胚根长度等与Na+浓度的回归方程,发现在NaCl胁迫下栓皮栎种子活力指数、胚根鲜重、胚根长度和胚根生长速率的临界值分别为300.0、300.0、333.6、369.6 mmol/L。(3)在NaCl和Na2CO3胁迫下,随Na+浓度的增加,丙二醛含量增幅显著;NaCl处理下的SOD(superoxide dismutase)活性呈现先升高后降低的趋势,而Na2CO3处理下则均低于对照;POD(peroxidase)活性变化不显著;CAT(catalase)活性均表现为先降低后升高;脯氨酸、可溶性蛋白和可溶性糖含量均随着Na+浓度的升高而呈现不同程度上升趋势。(4)等Na+浓度时,NaCl处理下的各项生长指标均高于Na2CO3处理,丙二醛、保护酶活性及渗透调节物质含量均低于Na2CO3处理,说明Na2CO3对栓皮栎种子的影响比NaCl更为显著。  相似文献   

8.
Expression of the gene (OsCA1) coding for carbonic anhydrase (CA) in leaves and roots of rice was induced by environmental stresses from salts (NaCl, NaHCO3 and Na2CO3), and osmotic stress (10%, w/v, PEG 6000). CA activity of rice seedlings more than doubled under some of these stresses. Transgenic Arabidopsis over-expressing OsCA1 had a greater salt tolerance at the seedling stage than wild-type plants in 1/2 MS medium with 5 mM NaHCO3, 50 mM NaCl, on 100 mM NaCl. Thus CA expression responds to environmental stresses and is related to stress tolerance in rice.  相似文献   

9.
再生水资源可浇灌农田,但水中含有的阴离子可使土壤产生盐胁迫。为研究盐胁迫对藜麦(Chenopodium quinoa)种子萌发特性及胚根、胚芽生长的影响,该研究以6个藜麦品种(红藜麦、国红藜麦、台红藜麦、台紫红藜麦、黄藜麦、台黄红藜麦)为材料,分别以NaCl、Na2SO4、NaHCO3和对照(CK)处理6个藜麦品种种子,测定其发芽率、胚根、胚芽抑制率等指标,运用均方差决策法对不同藜麦品种耐盐性进行综合评价,初步筛选出不同盐胁迫下耐盐性较强的品种。结果表明:(1)三种盐胁迫中,Na2SO4对种子萌发指标抑制作用最明显,6个藜麦品种的发芽率均相对较低,一直保持在5%以下,除黄藜麦、台黄红藜麦,其余4个品种的活力指数和生长速率均为0,除黄藜麦外,Na2SO4 对其余5个藜麦品种的胚根、胚芽抑制率均达到100%;NaCl对种子萌发和生长的抑制作用较小,甚至可促进胚根和胚芽生长,国红藜麦和台黄红藜麦的生长速率在NaCl处理下始终高于对照,在9 ...  相似文献   

10.
Sunflowers were treated with mixing proportions of NaCl, Na2SO4, NaHCO3, and Na2CO3. Effects of salt and saltalkaline mixed stress on growth, photosynthesis, chlorophyll fluorescence, and contents of inorganic ions and organic acids of sunflower were compared. The growth of sunflower decreased with increasing salinity. The contents of photosynthetic pigments did not decrease under salt stress, but their contents decreased sharply under salt-alkaline mixed stress. Net photosynthetic rates, stomatal conductance and intercellular CO2 concentration decreased obviously, with greater reductions under salt-alkaline mixed stress than under salt one. Fluorescence parameters showed no significant differences under salt stress. However, maximal efficiency of PSII photochemistry, photochemical quenching coefficient, electron transport rate, and actual PSII efficiency significantly decreased but non-photochemical quenching increased substantially under salt-alkaline mixed stress. Under salt-alkaline mixed stress, sunflower leaves maintained a low Na+- and high K+ status; this may be an important feature of sunflower tolerance to salinity. Analysis of the mechanism of ion balance showed that K+ but not Na+ was the main inorganic cation in sunflower leaves. Our results indicated that the change in organic acid content was opposite to the change of Cl, and the contribution of organic acid to total charge in sunflower leaves under both stresses decreased with increasing salinity. This may be a special adaptive response to stresses for sunflower. Sunflower under stress conditions mainly accumulated inorganic ions instead of synthesizing organic compounds to decrease cell water potential in order to save energy consumption.  相似文献   

11.
不同盐胁迫对柳枝稷生物量、品质和光合生理的影响   总被引:9,自引:0,他引:9  
为明确不同盐胁迫对柳枝稷生物量、品质及光合生理的影响,以无盐胁迫作为对照(CK),选取0.40%Na Cl、0.80%Na2SO4和0.80%Na HCO3进行了土柱试验。结果表明:(1)与CK相比,Na Cl、Na2SO4、Na HCO3胁迫下柳枝稷地上生物量、地下生物量、总生物量、籽粒产量及根冠比均显著降低(P0.05),总生物量分别降低49.39%、60.52%、76.45%,Na HCO3对柳枝稷的生长抑制作用最强,Na Cl最弱;(2)Na Cl胁迫下柳枝稷地上生物质灰分含量显著增高14.89%,Na2SO4胁迫下硫(S)含量显著增高262.32%,纤维素含量显著降低13.71%,Na HCO3胁迫下钾(K)含量显著增高54.95%,半纤维素含量显著增高10.87%,灰分和S含量的增高不利于柳枝稷地上生物质的燃烧利用,纤维素含量的降低和半纤维素含量的增高不利于其转化利用;(3)Na Cl、Na2SO4、Na HCO3胁迫下柳枝稷叶片净光合速率(Pn)分别显著降低21.89%、29.54%和24.59%,气孔限制因素可能是其光合作用受到抑制、生物量下降的关键因素。  相似文献   

12.
Two species with different resistances to alkaline pH, the glycophylic Triticum aestivum (wheat) and the halophilic Chloris virgata, were chosen as test organisms. The salt-alkaline (SA) mixed stress conditions with different buffer capacities (BC) but with the same salt molarities and pH were established by mixing neutral (NaCl, Na2SO4), and alkaline salts (NaHCO3 and Na2CO3) in various proportions. Growth, photosynthetic characteristics, and solute accumulation of the seedlings were monitored to test the validity of BC as a decisive index of alkali-stress (AS) intensity in SA mixed stress. At the same salinities and pHs, the relative growth rate, the content of photosynthetic pigments, and net photosynthetic rates of wheat and C. virgata decreased, while Na+ content and Na+/K+ ratios in shoots increased with increasing BC. Hence BC was a true measure of AS intensity at mixed SA stress and the alkali-resistance mechanism of plants was easy to interpret. BC of soil solution is an important parameter for estimating the alkalization degree of salt-alkalized soil.  相似文献   

13.
Low soil temperatures and low water potentials reduce and delay the seed germination of canola (Brassica rapa L., B. napus L.) in western Canada. Germination is also very sensitive to the salinity effects of nitrogen fertiliser placed with the seed, especially when the seed bed is relatively dry. The effects of pre-hydration and re-drying treatment on canola (Brassica rapa L. cv. Tobin) seed germination and seedling emergence at 10°C subjected to either a water or salt stress were determined. Low water potentials, induced by polyethylene glycol (PEG 8000), low soil moisture, or high concentrations of salts, reduced both germination and seedling emergence, and increased the time to 50% germination and emergence of seeds at 10°C. At equal osmotic potentials, Na2SO4 was less inhibitory on low temperature germination than either NaCl or PEG, suggesting that the sulphate ion partially alleviated the inhibitory effects of low water potential. Solutions of NaCI produced more abnormal seedlings compared to Na2SO4, suggesting that NaCl was more toxic than Na2SO4 during seedling development. Pre-hydration and re-drying partially overcame the inhibitory effects of both low water potential and salts on seed germination and seedling emergence at 10°C. The seed treatment increased the germination rate in Petri dishes and seedling emergence from a sandy loam soil. Water potentials or soil water contents required to inhibit 50% germination or emergence at 10°C were lower for treated seeds compared to control seeds. Salt concentrations inhibiting 50% emergence were higher for treated seeds than control seeds. Neither treated nor control seeds produced seedlings which emerged if the soil water content was lower than 9% or when the soil was continuously irrigated with salt solutions of 100 mmol kg-1 of NaCl or 50 mmol kg-1 of Na2SO4. These results suggest that the pre-hydration and re-drying treatment did not lower the base water potentials at which seedling emergence could occur. Abnormal seedlings were observed in both treated and control seeds, particularly if the soil was watered with NaCl solutions; however, the seed treatment reduced the number of abnormal seedlings.  相似文献   

14.
Kochia sieversiana (Pall.) C. A. M., a naturally alkali-resistant halophyte, was chosen as the test organism for our research. The seedlings of K. sieversiana were treated with varying (0–400 mM) salt stress (1:1 molar ratio of NaCl to Na2SO4) and alkali stress (1:1 molar ratio of NaHCO3 to Na2CO3). The concentrations of various solutes in fresh shoots, including Na+, K+, Ca2+, Mg2+, Cl, SO42−, NO3, H2PO3, betaine, proline, soluble sugar (SS), and organic acid (OA), were determined. The water content (WC) of the shoots was calculated and the OA components were analyzed. Finally, the osmotic adjustment and ion balance traits in the shoots of K. sieversiana were explored. The results showed that the WC of K. sieversiana remained higher than 6 [g g−1 Dry weight (DW)] even under the highest salt or alkali stress. At salinity levels >240 mM, proline concentrations increased dramatically, with rising salinity. We proposed that this was not a simple response to osmotic stress. The concentrations of Na+ and K+ all increased with increasing salinity, which implies that there was no competitive inhibition for absorption of either in K. sieversiana. Based on our results, the osmotic adjustment feature of salt stress was similar to that of alkali stress in the shoots of K. sieversiana. The shared essential features were that the shoots maintained a state of high WC, OA, Na+, K+ and other inorganic ions, accumulated largely in the vacuoles, and betaine, accumulated in cytoplasm. On the other hand, the ionic balance mechanisms under both stresses were different. Under salt stress, K. sieversiana accumulated OA and inorganic ions to maintain the intracellular ionic equilibrium, with close to equal contributions of OA and inorganic ions to anion. However, under alkali stress, OA was the dominant factor in maintaining ionic equilibrium. The contribution of OA to anion was as high as 84.2%, and the contribution of inorganic anions to anion was only 15.8%. We found that the physiological responses of K. sieversiana to salt and alkali stresses were unique, and that mechanisms existed in it that were different from other naturally alkali-resistant gramineous plants, such as Aneurolepidium chinense, Puccinellia tenuiflora. Responsible Editor: John McPherson Cheeseman.  相似文献   

15.
The weight ratio of Na2CO3/NaHCO3 was investigated in order to improve microalgal productivity in large-scale industrial operations by converting NaHCO3 to Na2CO3 with a growth of Arthrospira platensis cells in 660 m2 raceway ponds. Two microalgal cultivation systems with a NaHCO3 by-product (SPBP) and a CO2 bicarbonation absorber (CBAP) were firstly thoroughly introduced. There was a 13.3% decrease in the initial weight ratio of Na2CO3/NaHCO3 resulting in a 25.3% increase in the biomass growth rate with CBAP, compared to that of SPBP. Increased sunlight intensity, solution temperature and pH all resulted in both a higher absorbance and release, thereby increasing the weight ratio of Na2CO3/NaHCO3 during the growth of A. platensis. The biomass growth rate was peaked at 39.9 g m−2 day−1 when the weight ratio of Na2CO3/NaHCO3 was 3.7. Correspondingly, the cell pigments (chlorophyll a and carotenoid) and trichome size (helix pitch and trichome length) reached to a maximum state of 8.47 mg l−1, 762 μg l−1, 57 and 613 μm under the CBAP system.  相似文献   

16.
以黑籽南瓜(Cucurbita ficifolia)种子为试材, 研究了外施不同浓度的NaHS对NaHCO3胁迫下种子萌发及生理特性的影响。结果表明, NaHCO3胁迫显著抑制了黑籽南瓜种子的发芽率、胚轴长和胚根长, 降低了种子萌发过程中的可溶性糖含量, 抑制了α-淀粉酶、β-淀粉酶、SOD及POD活性。而外施不同浓度的NaHS显著促进了NaHCO3胁迫下黑籽南瓜萌发种子胚轴和胚根的生长, 提高了可溶性糖含量及α-淀粉酶、β-淀粉酶、SOD和POD活性, 降低了MDA含量; 外施其它盐类(Na2S、Na2SO4、NaHSO4和NaHSO3)及不同pH值(pH5.8–7.8)的Na2HPO4-NaH2PO4缓冲液对NaHCO3胁迫下黑籽南瓜种子的萌发则无影响。外施NaHS可有效缓解NaHCO3胁迫对黑籽南瓜种子萌发的抑制作用, 其缓解效应可能与其释放的H2S有关。  相似文献   

17.
Soil salinization and alkalinization frequently co-occur in naturally saline and alkaline soils. To understand the characteristics of mixed salt-alkali stress and adaptive response of Medicago ruthenica seedlings to salt-alkali stress, water content of shoots, growth and photosynthetic characteristics of seedlings under 30 salt-alkaline combinations (salinity 24–120 mM and pH 7.03–10.32) with mixed salts (NaCl, Na2SO4, NaHCO3, and Na2CO3) were examined. The indices were significantly affected by both salinity and pH. The interactive effects between salt and alkali stresses were significant, except for photosynthetic pigments. Water content of shoots, relative growth rates of shoots and roots and pigment concentrations showed decreasing trends with increasing salinity and alkalinity. The root activity under high alkalinity and salinity treatments gradually decreased, but was stimulated by the combined effects of low alkalinity and salinity. The survival rate decreased with increased salinity, except at pH 7.03–7.26 when all plants survived. Net photosynthetic rate, stomatal conductance and intercellular CO2 concentration decreased with increased salinity and pH. M. ruthenica tolerated the stress of high salt concentration when alkali concentration was low, and the synergistic effects of high alkali and high salt concentrations lead to the death of some or all seedlings. M. ruthenica appeared to be saltalkali tolerant. Reducing the salt concentration or pH based on the salt components in the soil may be helpful to abate damage from mixed salt-alkaline stress.  相似文献   

18.
Manure slurries (n = 3) prepared from the feces and urine of lactating dairy cattle (1 part urine, 2.2 parts feces, and 6.8 parts distilled water) had an initial pH of 8.6 ± 0.1; dissolved carbonate concentrations of 48 ± 4 mm, and Escherichia coli counts of 5.9 ± 0.7 logs per ml slurry. The pH of untreated slurries declined to pH 7.0 ± 0.1 by the 10th day of incubation, and the E. coli count increased approximately 10-fold (P < 0.05). When slurries were treated with Na2CO3, K2CO3, NaHCO3 or Na2CO3·NaHCO3 (0 to 16 g/kg slurry), the dissolved carbonates increased in a linear fashion, but only Na2CO3 and K2CO3 (8 g/kg or greater) or Na2CO3·NaHCO3 (16 g/kg) ensured an alkaline pH. Even relatively low concentrations of Na2CO3 or K2CO3 (8 or 12 g/kg) caused a decrease in E. coli viability (P < 0.05), and E. coli could not be detected if 16 g/kg was added (day 5 or 10 of incubation). Na2CO3·NaHCO3 also caused a decrease in E. coli viability, (P < 0.05), but some E. coli (approximately 104 cells per g) were detected on day 10 even if the concentration was 16 g/kg. NaHCO3 did not prevent the decrease in pH or cause a decrease in E. coli numbers (P > 0.05). Calculations based on the Henderson-Hasselbalch equation (pH and dissolved carbonates) indicated that little E. coli killing was noted until the dissolved carbonate anion concentrations (CO3 −2) were greater than 1 mm, but bicarbonate anion (HCO3 ) concentrations as high as 180 mm did not affect E. coli viability. These results are consistent with the idea that carbonate anion has antimicrobial properties and can kill E. coli in dairy cattle manure. Received: 20 December 2000 / Accepted: 7 February 2001  相似文献   

19.
Mustard (Brassica juncea L. Czern and Coss.) cvs. Pusa Jai Kisan (with low-affinity S transporter (LAT) system) and Pusa Bold (with dual, low- and high-affinity transporters (LAT + HAT) system) were supplied with 0 or 1 mM S in hydroponics culture, and the coordinate changes in growth traits (plant dry weight and leaf area), photosynthetic traits (photosynthetic rate, intercellular CO2, F v/F m, and chlorophyll content), activities of key enzymes of sulfur metabolism, such as ATP-sulfurylase (ATP-S), serine acetyltransferase (SAT), and glutathione reductase (GR), and the contents of cysteine (Cys) and glutathione (GSH) were studied in 30 days after sowing. The results showed that cv. Pusa Jai Kisan was more sensitive to S deprivation than cv. Pusa Bold. In cv. Pusa Jai Kisan, S deprivation resulted in a stronger decrease of plant growth and photosynthetic traits, Cys and GSH contents, and a notable decline in activity of ATP-S. S deprivation up-regulated GR activity to a greater extent in cv. Pusa Bold. In contrast, despite the activity of SAT, an enzyme involved in the final step of Cys biosynthesis, was increased in cv. Pusa Jai Kisan stronger than in cv. Pusa Bold under S-deprivation, it could not be translated into the increase in Cys and, thus, GSH contents and a consequent improvement in growth and photosynthesis. The study demonstrated that cv. Pusa Bold (with LAT + HAT) can be a promising cultivar for activation of Cys and/or GSH biosyntheses and increased plant tolerance to S-deprivation conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号