首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Probiotics play a vital role in clinical applications for the treatment of diarrhea, obesity and urinary tract infections. Phytate, an anti-nutrient, chelates essential minerals that are vital for human health. In the past few decades, research reports emphasize extensively on phytate degradation in animals. There is a growing need for finding alternate strategies of phytate utilization in human, as they are unable to produce phytase. At this juncture, probiotics can be utilized for phytase production to combat mineral deficiency in humans. The main focus of this review is on improving phosphate bioavailability by employing two approaches: supplementation of (1) fermented food products that contain probiotics and (2) recombinant phytase producing bacteria. In addition, several factors influencing phytase activity such as bacterial viability, optimal pH, substrate concentration and specificity were also discussed.  相似文献   

2.
Ability of some strains of lactic acid bacteria to degrade phytic acid   总被引:2,自引:0,他引:2  
Twelve strains of lactic acid bacteria were examined for their ability to degrade phytate. In media in which phytic acid was the source of phosphate, phytate degradation was observed. Phytate disappearance may however not only be due to phytase, as phytic acid coprecipitated with protein as a consequence of a fall in pH during fermentation.  相似文献   

3.
Ten different strains of Thermomyces lanuginosus, isolated from composting soils were found to produce phytase when grown on PSM medium. The wild type strain CM was found to produce maximum amount ofphytase (4.33 units/g DW substrate). Culturing T. lanuginosus strain CM on medium containing wheat bran and optimizing other culture conditions (carbon source, media type, nitrogen source, level of nitrogen, temperature, pH, inoculum age, inoculum level and moisture), increased the phytase yield to 13.26 units/g substrate. This culture was further subjected to UV mutagenesis for developing phytase hyperproducing mutants. The mutant (TL-7) showed 2.29-fold increase in phytase activity as compared to the parental strain. Employing Box-Behnken factor factorial design of response surface methodology resulted in optimized phytase production (32.19 units/g of substrate) by mutant TL-7. A simple two-step purification (40.75-folds) ofphytase from mutant TL-7 was achieved by anion exchange and gel filtration chromatography. The purified phytase (approximately 54 kDa) was characterized to be optimally active at pH 5.0 and temperature 70 degrees C, though the enzyme showed approximately 70% activity over a wide pH and temperature range (2.0-10.0 and 30-90 degrees C, respectively). The phytase showed broad substrate specificity with activity against sodium phytate, ADP and riboflavin phosphate. The phytase from T. lanuginosus was thermoacidstable as it showed up to 70% residual activity after exposure to 70 degrees C at pH 3.0 for 120 min. The enzyme showed Km 4.55 microM and Vmax 0.833 microM/min/mg against sodium phytate as substrate.  相似文献   

4.
Transgenic maize plants expressing a fungal phytase gene   总被引:12,自引:0,他引:12  
Maize seeds are the major ingredient of commercial pig and poultry feed. Phosphorus in maize seeds exists predominantly in the form of phytate. Phytate phosphorus is not available to monogastric animals and phosphate supplementation is required for optimal animal growth. Undigested phytate in animal manure is considered a major source of phosphorus pollution to the environment from agricultural production. Microbial phytase produced by fermentation as a feed additive is widely used to manage the nutritional and environmental problems caused by phytate, but the approach is associated with production costs for the enzyme and requirement of special cares in feed processing and diet formulation. An alternative approach would be to produce plant seeds that contain high phytase activities. We have over-expressed Aspergillus niger phyA2 gene in maize seeds using a construct driven by the maize embryo-specific globulin-1 promoter. Low-copy-number transgenic lines with simple integration patterns were identified. Western-blot analysis showed that the maize-expressed phytase protein was smaller than that expressed in yeast, apparently due to different glycosylation. Phytase activity in transgenic maize seeds reached approximately 2,200 units per kg seed, about a 50-fold increase compared to non-transgenic maize seeds. The phytase expression was stable across four generations. The transgenic seeds germinated normally. Our results show that the phytase expression lines can be used for development of new maize hybrids to improve phosphorus availability and reduce the impact of animal production on the environment.  相似文献   

5.
Serra  Manuel  Carmona  Maria José 《Hydrobiologia》1993,252(1):117-126
The organic phosphate pool of some Camargue sediments (South of France) was studied, after removal of inorganic phosphate, with Ca-NTA/dithionite (Fe bound phosphate) and Na-EDTA (Ca bound phosphate). The organic phosphate was divided into an acid soluble organic phosphate fraction (ASOP) and a residual organic phosphate fraction (ROP). The extraction of organic matter with 2.0 M NaOH (90 °C) from ROP yielded considerable quantities of Org-P. In this extract the presence of phytate (inositol hexa phosphate) could be demonstrated using phytase to hydrolyse the phytate. Phytate was shown to account for a considerable part of organic phosphate in sediments of freshwater marsh sediments as well as in the sediment of the brackish/salt water lake ‘Etang de Vaccares’. In laboratory experiments phytate was found to precipitate with all poly-valent cations tested. Furthermore, phytate was found to be strongly adsorbed onto Fe(OOH), which may explain its accumulation and its stability in sediments. Considerable quantities of ASOP were found; the chemical stucture of this pool remains unknown.  相似文献   

6.
A phytase (EC 3.1.3.8) from Pseudomonas syringae MOK1 was purified to apparent homogeneity in two steps employing cation and an anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 45 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The optimal activity occurred at pH 5.5 and 40 degrees C. The Michaelis constant (Km) and maximum reaction rate (Vmax) for sodium phytate were 0.38 mM and 769 U/mg of protein, respectively. The enzyme was strongly inhibited by Cu2+, Cd2+, Mn2+, and ethylenediaminetetraacetic acid (EDTA). It showed a high substrate specificity for sodium phytate with little or no activity on other phosphate conjugates. The enzyme efficiently released orthophosphate from wheat bran and soybean meal.  相似文献   

7.
The present study gives an overview on the whole mechanism of phytate degradation in the gut and the enzymes involved. Based on the similarity of the human and pigs gut, the study was carried out in pigs as model for humans. To differentiate between intrinsic feed phytases and endogenous phytases hydrolysing phytate in the gut, two diets, one high (control diet) and the other one very low in intrinsic feed phytases (phytase inactivated diet) were applied. In the chyme of stomach, small intestine and colon inositol phosphate isomers and activities of phytases and alkaline phosphatases were determined. In parallel total tract phytate degradation and apparent phosphorus digestibility were assessed. In the stomach chyme of pigs fed the control diet, comparable high phytase activity and strong phytate degradation were observed. The predominant phytate hydrolysis products were inositol phosphates, typically formed by plant phytases. For the phytase inactivated diet, comparable very low phytase activity and almost no phytate degradation in the stomach were determined. In the small intestine and colon, high activity of alkaline phosphatases and low activity of phytases were observed, irrespective of the diet fed. In the colon, stronger phytate degradation for the phytase inactivated diet than for the control diet was detected. Phytate degradation throughout the whole gut was nearly complete and very similar for both diets while the apparent availability of total phosphorus was significantly higher for the pigs fed the control diet than the phytase inactivated diet. The pathway of inositol phosphate hydrolysis in the gut has been elucidated.  相似文献   

8.
Saccharomyces cerevisiae CY phytase-producing cells were immobilized in calcium alginate beads and used for the degradation of phylate. The maximum activity and immobilization yield of the immobilized phytase reached 280 mU/g-bead and 43%, respectively. The optimal pH of the immobilized cell phytase was not different from that of the free cells. However, the optimum temperature for the immobilized phytase was 50°C, which was 10°C higher than that of the free cells; pH and thermal stability were enhanced as a consequence of immobilization. Using the immobilized phytase, phytate was degraded in a stirred tank bioreactor. Phytate degradation, both in a buffer solution and in soybean-curd whey mixture, showed very similar trends. At an enzyme dosage of 93.9 mU/g-phytate, half of the phytate was degraded after 1 h of hydrolysis. The operational stability of the immobilized beads was examined with repeated batchwise operations. Based on 50% conversion of the phytate and five times of reuse of the immobilized beads, the specific degradation (g phytate/g dry cell weight) for the immobilized phytase increased 170% compared to that of the free phytase.  相似文献   

9.
Phytases catalyze the hydrolysis of phosphomonoester bonds of phytate (myo-inositol hexakisphosphate), thereby creating lower forms of myo-inositol phosphates and inorganic phosphate. In this study, cDNA expression libraries were constructed from four basidiomycete fungi (Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens) and screened for phytase activity in yeast. One full-length phytase-encoding cDNA was isolated from each library, except for the Ceriporia sp. library where two different phytase-encoding cDNAs were found. All five phytases were expressed in Aspergillus oryzae, purified, and characterized. The phytases revealed temperature optima between 40 and 60 degrees C and pH optima at 5.0 to 6.0, except for the P. lycii phytase, which has a pH optimum at 4.0 to 5.0. They exhibited specific activities in the range of 400 to 1,200 U. mg, of protein(-1) and were capable of hydrolyzing phytate down to myo-inositol monophosphate. Surprisingly, (1)H nuclear magnetic resonance analysis of the hydrolysis of phytate by all five basidiomycete phytases showed a preference for initial attack at the 6-phosphate group of phytic acid, a characteristic that was believed so far not to be seen with fungal phytases. Accordingly, the basidiomycete phytases described here should be grouped as 6-phytases (EC 3.1.3.26).  相似文献   

10.
Kim OH  Kim YO  Shim JH  Jung YS  Jung WJ  Choi WC  Lee H  Lee SJ  Kim KK  Auh JH  Kim H  Kim JW  Oh TK  Oh BC 《Biochemistry》2010,49(47):10216-10227
Phytate is an antinutritional factor that influences the bioavailability of essential minerals by forming complexes with them and converting them into insoluble salts. To further our understanding of the chemistry of phytate's binding interactions with biologically important metal cations, we determined the stoichiometry, affinity, and thermodynamics of these interactions by isothermal titration calorimetry. The results suggest that phytate has multiple Ca(2+)-binding sites and forms insoluble tricalcium- or tetracalcium-phytate salts over a wide pH range (pH 3.0-9.0). We overexpressed the β-propeller phytase from Hahella chejuensis (HcBPP) that hydrolyzes insoluble Ca(2+)-phytate salts. Structure-based sequence alignments indicated that the active site of HcBPP may contain multiple calcium-binding sites that provide a favorable electrostatic environment for the binding of Ca(2+)-phytate salts. Biochemical and kinetic studies further confirmed that HcBPP preferentially recognizes its substrate and selectively hydrolyzes insoluble Ca(2+)-phytate salts at three phosphate group sites, yielding the final product, myo-inositol 2,4,6-trisphosphate. More importantly, ITC analysis of this final product with several cations revealed that HcBPP efficiently eliminates the ability of phytate to chelate several divalent cations strongly and thereby provides free minerals and phosphate ions as nutrients for the growth of bacteria. Collectively, our results provide significant new insights into the potential application of HcBPP in enhancing the bioavailability and absorption of divalent cations.  相似文献   

11.
Fungal phyA gene expressed in potato leaves produces active and stable phytase   总被引:10,自引:0,他引:10  
Fungal phyA gene from Aspergillus ficuum (niger) was cloned and expressed in potato leaves. The recombinant enzyme was stable and catalytically active. The expressed protein in the leaves of the dicotyledonous plant retained most physical and catalytic properties of the benchmark A. ficuum phytase. The expressed enzyme was, however, 15% less glycosylated than the native phytase. The usual bi-hump pH optima profile, which is characteristic of the fungal phytase, was altered; however, the pH optimum at 5.0 was unchanged for phytate and at 4.0 for synthetic substrate p-nitrophenyl phosphate. The temperature was, however, unchanged. The expressed phytase was found to be as sensitive as the native enzyme to the inhibitory action of pseudo substrate, myo-inositol hexasulfate, while losing about 90% of the activity at 20 microM inhibitor concentration. Similar to the benchmark phytase, the expressed phytase in leaves was completely inactivated by Arg modifier phenylglyoxal at 60 nM. In addition, the expressed phytase in the leaves was inhibited by antibody raised against a 20-mer internal peptide, which is present on the surface of the molecule as shown by the X-ray deduced 3D structure of fungal phytase. Taken together, the biochemical evidences indicate that fungal phytase when cloned and expressed in potato leaves produces a stable and active biocatalyst. 'Biofarming,' therefore, is an alternative way to produce functional hydrolytic enzymes as exemplified by the expression of A. ficuum (niger) phyA gene in potato leaf.  相似文献   

12.
Heterologous expression of a phytase gene (phyC) from Bacillus amyloliquefaciens DSM 7 enabled the growth of Corynebacterium glutamicum with phytate (myo-inositol-1,2,3,4,5,6-hexakisphosphate) as a new, sole source of phosphorus. Phytate was not used as a carbon source. During growth of the phyC-expressing amino acid (l-lysine)-producing strain C. glutamicum ATCC 21253 (pWLQ2::phyC) with phytate as the source of phosphorus, merely a small, transient accumulation of inorganic phosphate was observed in the fermentation broth. At the later stages of fermentation, free inorganic phosphate from phytate degradation was no longer detectable. Growth and l-lysine production by the phytase-producing strain C. glutamicum ATCC 21253 (pWLQ2::phyC) in phytate medium did not differ significantly from control experiments with strain C. glutamicum ATCC 21253 (pWLQ2) conducted with an excess of inorganic phosphate, demonstrating that there was no phosphate limitation when phytate was used as the phosphorus source. Under the expression conditions employed, only part of PhyC was secreted to the culture broth by C. glutamicum, but this did not significantly affect growth or lysine production.  相似文献   

13.
Phytases are a special class of phosphatase that catalyze the sequential hydrolysis of phytate to less-phosphorylated myo-inositol derivatives and inorganic phosphate. Phytases are added to animal feedstuff to reduce phosphate pollution in the environment, since monogastric animals such as pigs, poultry, and fish are unable to metabolize phytate. Based on biochemical properties and amino acid sequence alignment, phytases can be categorized into two major classes, the histidine acid phytases and the alkaline phytases. The histidine acid phosphatase class shows broad substrate specificity and hydrolyzes metal-free phytate at the acidic pH range and produces myo-inositol monophosphate as the final product. In contrast, the alkaline phytase class exhibits strict substrate specificity for the calcium–phytate complex and produces myo-inositol trisphosphate as the final product. This review describes recent findings that present novel viewpoints concerning the molecular basis of phytase classification.  相似文献   

14.
A geranyl diphosphate synthase (EC 2.5.1.1), which catalyzes the formation of geranyl diphosphate from dimethylallyl diphosphate and isopentenyl diphosphate, was isolated from Vitis vinifera L. cv Muscat de Frontignan cell cultures. Purification of the enzyme was achieved successively by ammonium sulfate precipitation and chromatography on DEAE-Sephacel, hydroxylapatite, Mono Q, Phenyl Superose, Superose 12, and preparative nondenaturing polyacrylamide gels. The enzyme formed only geranyl diphosphate as a product. In all cases, neither neryl diphosphate, the cis isomer, nor farnesyl diphosphate was detected. The enzyme showed a native molecular mass of 68 [plus or minus] 5 kD as determined by gel permeation. On sodium dodecyl sulfate polyacrylamide gels, geranyl diphosphate synthase purified to electrophoretic homogeneity migrated with a molecular mass of 66 [plus or minus] 2 kD. Michaelis constants for isopentenyl diphosphate and dimethylallyl diphosphate were 8.5 and 56.8 [mu]M, respectively. The enzyme required Mn2+ and Mg2+ as cofactors and its activity was enhanced by Triton X-100. Inorganic pyrophosphate, aminophenylethyl diphosphate, and geranyl diphosphate had inhibitory effects on the enzyme.  相似文献   

15.
Phosphoribosylpyrophosphate synthetase (PRS; EC 2.7.6.1) from Hevea brasiliensis Mull. Arg. latex was located in the cytosol. After purification, its apparent molecular weight under nondenaturing conditions was estimated at 200,000 [plus or minus] 10,000; a single band at 57,000 [plus or minus] 3,000 was detected after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme seemed to be a homotetramer. Its affinity constants were estimated at 200 [plus or minus] 30 [mu]M for adenosine triphosphate and 40 [plus or minus] 2 [mu]M for ribose-5-phosphate. The purified enzyme proved to be functional in a paraphysiological medium (cytosol deproteinized by ultrafiltration). Optimum pH was 7.5 in buffer and 6.5 in a paraphysiological medium. No PRS activity was detected in the absence of the Mg2+ ion. Of the numerous compounds tested, only Mn2+, phosphoribosylpyrophosphate, and inorganic phosphate affected the enzymatic reaction. Mn2+ (inhibitor constant = 20 [mu]M) and phosphoribosylpyrophosphate (inhibitor constant = 30 [mu]M) were inhibitors. PRS responded allosterically (Hill's coefficient = 2.3) to ribulose-5-phosphate in the presence of a physiological concentration of inorganic phosphate (10 mM). These results are set in the physiological context of laticifers.  相似文献   

16.
The objective of the study was to evaluate the effect of screen size (1, 2 and 3 mm) and microbial phytase (0 and 1000 FTU/kg as-fed) on phytate degradation in maize (100% maize), soybean meal (100% SBM) and maize–SBM (75% maize and 25% SBM) incubated in water for 0, 2, 4, 8 and 24 h at 38°C. Samples were analysed for pH, dry matter and phytate phosphorus (P). Particle size distribution (PSD) and average particle size (APS) of samples were measured by the Laser Diffraction and Bygholm method. PSD differed between the two methods, whereas APS was similar. Decreasing screen size from 3 to 1 mm reduced APS by 48% in maize, 30% in SBM and 26% in maize–SBM. No interaction between screen size and microbial phytase on phytate degradation was observed, but the interaction between microbial phytase and incubation time was significant (P<0.001). This was because microbial phytase reduced phytate P by 88% in maize, 84% in maize–SBM and 75% in SBM after 2 h of incubation (P<0.05), whereas the reduction of phytate P was limited (<50%) in the feeds, even after 24 h when no microbial phytase was added. The exponential decay model was fitted to the feeds with microbial phytase to analyse the effect of screen size and feed on microbial phytase efficacy on phytate degradation. The interaction between screen size and feed affected the relative phytate degradation rate (Rd) of microbial phytase as well as the time to decrease 50% of the phytate P (t1/2) (P<0.001). Thus, changing from 3 to 1 mm screen size increased Rd by 22 and 10%/h and shortened t1/2 by 0.4 and 0.2 h in maize and maize–SBM, respectively (P<0.05), but not in SBM. Moreover, the screen size effect was more pronounced in maize and maize–SBM compared with SBM as a higher phytate degradation rate constant (Kd) and Rd, and a shorter t1/2 was observed in maize compared with SBM in all screen sizes (P<0.05). However, a higher amount of degraded phytate was achieved in SBM than in maize because of the higher initial phytate P content in SBM. In conclusion, reducing screen size from 3 to 1 mm increased Kd and Rd and decreased t1/2 in maize and maize–SBM with microbial phytase. The positive effect of grinding on improving microbial phytase efficacy, which was expressed as Kd, Rd and t1/2, was greater in maize than in SBM.  相似文献   

17.
Gao Y  Smith GJ  Alberte RS 《Plant physiology》1993,103(4):1437-1445
Assimilatory nitrate reductase (NR) was purified from the marine diatom Skeletonema costatum (clone Skel) using Cibacron blue-Sepharose affinity chromatography. The single-step purification scheme yielded a 103-fold purification of specific activity with an overall recovery of 40.8%. Only NADH-dependent NR activity (form EC 1.6.6.1) was observed in this species. Kinetic analysis revealed that this form had apparent Michaelis constants of 3.6 [mu]M for NADH and 295 [mu]M for NO3- when purified from cells grown in NO3--enriched seawater. The S. costatum NR exhibits a pH optimum of 7.4, a temperature optimum of 14[deg]C, and enzyme activity not sensitive to Mg2+ inhibition. The strong temperature dependence of NR activity in S. costatum may contribute to the seasonal and latitudinal distributions and abundances of this bloom-forming species. Chromatographically isolated NR was further purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, yielding a single polypeptide with an apparent molecular mass of 110 kD. The 110-kD polypeptide was used to generate polyclonal antibodies. The antiserum recognized a single 110-kD polypeptide in western blots of total proteins from S. costatum, as well as the native enzyme. Western blot analysis also revealed an antigenic similarity of NR from two additional diatom species, whereas no cross-reactivity was observed with NR from other phytoplankton taxa, including prymnesiophytes, dinoflagellate, cyanobacterium, and green alga. This result suggests a structural diversity of NR in phytoplankton and identifies the potential for development of taxon-specific NR antisera for ecological studies.  相似文献   

18.
Ten Cryptococcus strains were screened for phytase activity, of which the Cryptococcus laurentii ABO 510 strain showed the highest level of activity. The cell wall-associated enzyme displayed temperature and pH optima of 62 degrees C and 5.0, respectively. The enzyme was thermostable at 70 degrees C, with a loss of 40% of its original activity after 3 h. The enzyme was active on a broad range of substrates, including ATP, D-glucose 6-phosphate, D-fructose 1,6-diphosphate and p-nitrophenyl phosphate (p-NPP), but its preferred substrate was phytic acid (K(m) of 21 microM). The enzyme activity was completely inhibited by 0.5 mM inorganic phosphate or 5 mM phytic acid, and moderately inhibited in the presence of Hg(2+), Zn(2+), Cd(2+) and Ca(2+). These characteristics suggest that the Cry. laurentii ABO 510 phytase may be considered for application as an animal feed additive to assist in the hydrolysis of phytate complexes to improve the bioavailability of phosphorus in plant feedstuff.  相似文献   

19.
20.
Phosphoribosylpyrophosphate synthetase (PRS; EC 2.7.6.1) from Hevea brasiliensis Mull. Arg. latex was located in the cytosol. After purification, its apparent molecular weight under nondenaturing conditions was estimated at 200,000 [plus or minus] 10,000; a single band at 57,000 [plus or minus] 3,000 was detected after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme seemed to be a homotetramer. Its affinity constants were estimated at 200 [plus or minus] 30 [mu]M for adenosine triphosphate and 40 [plus or minus] 2 [mu]M for ribose-5-phosphate. The purified enzyme proved to be functional in a paraphysiological medium (cytosol deproteinized by ultrafiltration). Optimum pH was 7.5 in buffer and 6.5 in a paraphysiological medium. No PRS activity was detected in the absence of the Mg2+ ion. Of the numerous compounds tested, only Mn2+, phosphoribosylpyrophosphate and inorganic phosphate affected the enzymatic reaction. Mn2+ (inhibitor constant = 20 [mu]M) and phosphoribosylpyrophosphate (inhibitor constant = 30 [mu]M) were inhibitors. PRS responded allosterically (Hill's coefficient = 2.3) to ribose-5-phosphate in the presence of a physiological concentration of inorganic phosphate (10 mM). These results are set in the physiological context of laticifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号