首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J X Li  H Schulz 《Biochemistry》1988,27(16):5995-6000
In an attempt to develop a compound which would specifically inhibit 3-ketoacyl-CoA thiolase (EC 2.3.1.16) in whole mitochondria, 4-bromo-2-octenoic acid was synthesized and studied. After rat liver mitochondria were preincubated with 4-bromo-2-octenoic acid for 3 min, respiration supported by either palmitoylcarnitine or pyruvate was completely abolished, whereas no inhibition was observed with rat heart mitochondria. Addition of carnitine stimulated respiration supported by pyruvate without relieving inhibition of palmitoylcarnitine-dependent respiration. Hence, this compound seems to be a specific inhibitor of beta-oxidation. When the enzymes of beta-oxidation were assayed in a soluble extract prepared from mitochondria preincubated with 4-bromo-2-octenoic acid, only 3-ketoacyl-CoA thiolase was found to be inactivated. 4-Bromo-2-octenoic acid is metabolized by mitochondrial beta-oxidation enzymes to 3-keto-4-bromooctanoyl-CoA which effectively and irreversibly inhibits 3-ketoacyl-CoA thiolase but not acetoacetyl-CoA thiolase (EC 2.3.1.9). Even though 3-keto-4-bromooctanoyl-CoA inhibits the latter enzyme reversibly, 4-bromo-2-octenoic acid does not inhibit ketogenesis in rat liver mitochondria with acetylcarnitine as a substrate. It is concluded that 4-bromo-2-octenoic acid specifically inhibits mitochondrial fatty acid oxidation by inactivating 3-ketoacyl-CoA thiolase in rat liver mitochondria.  相似文献   

2.
The metabolism of 3-mercaptopropionic acid in mitochondria was studied by use of purified mitochondrial enzymes and rat heart mitochondria. Metabolites of 3-mercaptopropionic acid were separated by high performance liquid chromatography and identified by comparing them with chemically synthesized derivatives of 3-mercaptopropionic acid. The initial step in the metabolism of 3-mercaptopropionic acid is its conversion to a CoA thioester, most likely catalyzed by medium-chain acyl-CoA synthetase. The resulting 3-mercaptopropionyl-CoA is a poor substrate of acyl-CoA dehydrogenase but substitutes effectively for CoASH in reactions catalyzed by 3-ketoacyl-CoA thiolase and acetoacetyl-CoA thiolase. S-Acyl-3-mercaptopropionyl-CoA thioesters formed in the thiolase-catalyzed reactions are not at all or only poorly acted upon by acyl-CoA dehydrogenases. However, they are hydrolyzed by thioesterase(s) to CoASH and S-acyl-3-mercaptopropionic acid. The hydrolysis of S-acyl-3-mercaptopropionyl-CoA thioesters proceeds more rapidly than the hydrolysis of fatty acyl-CoA thioesters of comparable chain lengths. Free CoASH is also regenerated from S-acetyl-3-mercaptopropionyl-CoA and more rapidly from 3-mercaptopropionyl-CoA as a result of their reactions with carnitine catalyzed by carnitine acetyltransferase. These findings lead to the suggestion that the major mitochondrial CoA-containing metabolites of 3-mercaptopropionic acid are S-acyl-3-mercaptopropionyl-CoA thioesters.  相似文献   

3.
1. The CoA and carnitine esters of 2-bromopalmitate are extremely powerful and specific inhibitors of mitochondrial fatty acid oxidation. 2. 2-Bromopalmitoyl-CoA, added as such or formed from 2-bromopalmitate, inhibits the carnitine-dependent oxidation of palmitate or palmitoyl-CoA, but not the oxidation of palmitoylcarnitine, by intact liver mitochondria. 3. 2-Bromopalmitoylcarnitine inhibits the oxidation of palmitoylcarnitine as well as that of palmitate or palmitoyl-CoA. It has no effect on succinate oxidation, but inhibits that of pyruvate, 2-oxoglutarate or hexanoate; however, the oxidation of these substrates (but not of palmitate, palmitoyl-CoA or palmitoyl-carnitine) is restored by carnitine. 4. In damaged mitochondria, added 2-bromopalmitoyl-CoA does inhibit palmitoylcarnitine oxidation; pyruvate oxidation is unaffected by the inhibitor alone, but is impaired if palmitoylcarnitine is subsequently added. 5. The findings have been interpreted as follows. 2-Bromopalmitoyl-CoA inactivates (in a carnitine-dependent manner) a pool of carnitine palmitoyltransferase which is accessible to external acyl-CoA. This results in inhibition of palmitate or palmitoyl-CoA oxidation. A second pool of carnitine palmitoyltransferase, inaccessible to added acyl-CoA in intact mitochondria, can generate bromopalmitoyl-CoA within the matrix from external 2-bromopalmitoylcarnitine; this reaction is reversible. Such internal 2-bromopalmitoyl-CoA inactivates long-chain beta-oxidation (as does added 2-bromopalmitoyl-CoA if the mitochondria are damaged) and its formation also sequesters intramitochondrial CoA. Since this CoA is shared by pyruvate and 2-oxoglutarate dehydrogenases, the oxidation of their substrates is depressed by 2-bromopalmitoylcarnitine, unless free carnitine is available to act as a ;sink' for long-chain acyl groups. 6. These effects are compared with those reported for other inhibitors of fatty acid oxidation.  相似文献   

4.
In an attempt to clarify why the brain oxidizes fatty acids poorly or not at all, the activities of beta-oxidation enzymes present in rat brain and rat heart mitochondria were measured and compared with each other. Although the apparent Km values and chain-length specificities of the brain and heart enzymes are similar, the specific activities of all but one brain enzyme are between 4 and 50% of those observed in heart mitochondria. The exception is 3-ketoacyl-CoA thiolase (EC 2.3.1.16) whose specific activity in brain mitochondria is 125 times lower than in heart mitochondria. The partially purified brain 3-ketoacyl-CoA thiolase was shown to be catalytically and immunologically identical with the heart enzyme. The low rate of fatty acid oxidation in brain mitochondria, estimated on the basis of palmitoylcarnitine-supported respiration and [1-14C]palmitoylcarnitine degradation to be less than 0.5 nmol/min/mg of protein, may be the consequence of the low activity of 3-ketoacyl-CoA thiolase. Inhibition of [1-14C]palmitoylcarnitine oxidation by 4-bromocrotonic acid proves the observed oxidation of fatty acids in brain to be dependent on 3-ketoacyl-CoA thiolase and thus to occur via beta-oxidation. Since the reactions catalyzed by carnitine palmitoyltransferase (EC 2.3.1.21) and acyl-CoA synthetase (EC 6.2.1.3) do not seem to restrict fatty acid oxidation in brain, it is concluded that the oxidation of fatty acids in rat brain is limited by the activity of the mitochondrial 3-keto-acyl-CoA thiolase.  相似文献   

5.
In an attempt to elucidate the mechanism by which the rate of fatty acid oxidation is tuned to the energy demand of the heart, the effects of changing intramitochondrial ratios of [acetyl-CoA]/[CoASH] and [NADH]/[NAD+] on the rate of beta-oxidation were studied. When 10 mM L-carnitine was added to coupled rat heart mitochondria to lower the ratio of [acetyl-CoA]/[CoASH], the rate of palmitoylcarnitine beta-oxidation, as measured by the formation of acid-soluble products, was stimulated more than fourfold at state 4 respiration while beta-oxidation at state 3 respiration was hardly affected. Neither oxaloacetate nor acetoacetate, added to mitochondria to lower the [NADH]/[NAD+] ratio, stimulated beta-oxidation. Rates of respiration at states 3 and 4 were unchanged by additions of L-carnitine, oxaloacetate, or acetoacetate. Determinations of intramitochondrial ratios of [acetyl-CoA]/[CoASH] by high performance liquid chromatography yielded values close to 10 for palmitoylcarnitine-supported respiration at state 4 and 2.5 at state 3 respiration. Addition of 10 mM L-carnitine caused a dramatic decrease of these ratios to less than 0.2 at both respiration states. Studies with purified or partially purified enzymes revealed strong inhibitions of 3-ketoacyl-CoA thiolase by acetyl-CoA and of L-3-hydroxyacyl-CoA dehydrogenase by NADH. Moreover, the activity of 3-ketoacyl-CoA thiolase at concentrations of acetyl-CoA and CoASH prevailing at state 3 respiration was 4 times higher than its activity in the presence of acetyl-CoA and CoASH observed at state 4. Altogether, this study leads to the conclusion that the rate of beta-oxidation in heart can be regulated by the intramitochondrial ratio of [acetyl-CoA]/[CoASH] which reflects the energy demand of the tissue. The thiolytic cleavage catalyzed by 3-ketoacyl-CoA thiolase may be the site at which beta-oxidation is controlled by the [acetyl-CoA]/[CoASH] ratio.  相似文献   

6.
1. The synthesis of pent-4-enoyl-l-carnitine, cyclopropanecarbonyl-l-carnitine and cyclobutanecarbonyl-l-carnitine is described. 2. Pent-4-enoate strongly inhibits palmitoyl-l-carnitine oxidation in coupled but not in uncoupled mitochondria. Pent-4-enoyl-l-carnitine strongly inhibits palmitoyl-l-carnitine oxidation in uncoupled mitochondria. Prior intramitochondrial formation of pent-4-enoyl-CoA is therefore necessary for inhibition. 3. There was a small self-limiting pulse of oxidation of pent-4-enoyl-l-carnitine during which the ability to inhibit the oxidation of subsequently added palmitoyl-l-carnitine developed. 4. Pent-4-enoate and pent-4-enoyl-l-carnitine are equally effective inhibitors of the oxidation of all even-chain acylcarnitines of chain length C(4)-C(16). Pent-4-enoyl-l-carnitine also inhibits the oxidation of pyruvate and of 2-oxoglutarate. 5. Pent-4-enoate strongly inhibits the oxidation of palmitate but not that of octanoate. This is presumably due to competition between octanoate and pent-4-enoate for medium-chain acyl-CoA ligase. 6. There was less inhibition of the oxidation of pyruvate by pent-4-enoyl-l-carnitine, and of palmitoyl-l-carnitine by cyclopropanecarbonyl-l-carnitine, after pre-incubation with 10mm-arsenate. This suggests that these inhibitions were caused either by depletion of free CoA or by increase of acyl-CoA concentrations, since arsenate deacylates intramitochondrial acyl-CoA. There was little effect on the inhibition of palmitoyl-l-carnitine oxidation by pent-4-enoyl-l-carnitine. 7. Penta-2,4-dienoate strongly inhibited palmitoyl-l-carnitine oxidation in coupled mitochondria; acrylate only inhibited slightly. 8. Pent-4-enoate (0.1mm) caused a rapid and almost complete decrease in free CoA and a large increase in acid-soluble acyl-CoA when incubated with coupled mitochondria. Cyclopropanecarboxylate caused a similar decrease in CoA, with an equivalent rise in acid-soluble acyl-CoA concentrations. n-Pentanoate caused extensive lowering of CoA and a large increase in acid-soluble acyl-CoA and acetyl-CoA concentrations. Octanoate caused a 50% lowering of CoA and an increase in acid-soluble acyl-CoA and acetyl-CoA concentrations. 9. Cyclopropanecarboxylate and n-pentanoate were less potent inhibitors of palmitate oxidation than was pent-4-enoate. 10. It is concluded that pent-4-enoate causes a specific inhibition of beta-oxidation after the formation intramitochondrially of its metabolites.  相似文献   

7.
1. State-3 (i.e. ADP-stimulated) rates of O(2) uptake with palmitoylcarnitine, palmitoyl-CoA plus carnitine, pyruvate plus malonate plus carnitine and octanoate as respiratory substrate were all diminished in heart mitochondria isolated from senescent (24-month-old) rats compared with mitochondria from young adults (6 months old). By contrast, State-3 rates of O(2) uptake with pyruvate plus malate or glutamate plus malate were the same for mitochondria from each age group. 2. Measurements of enzyme activities in disrupted mitochondria showed a decline with senescence in the activity of acyl-CoA synthetase (EC 6.2.1.2 and 6.2.1.3), carnitine acetyltransferase (EC 2.3.1.7) and 3-hydroxy-acyl-CoA dehydrogenase (EC 1.1.1.35), but no change in the activity of carnitine palmitoyltransferase (EC 2.3.1.21) or acyl-CoA dehydrogenase (EC 1.3.99.3). 3. Measurement of dl-[(3)H]carnitine (in)/acetyl-l-carnitine (out) exchange in intact mitochondria showed decreased rates when the animals used were senescent. However, this followed from a decreased intramitochondrial pool of exchangeable carnitine, such that calculated first-order rate constants for exchange were identical in mitochondria from the two age groups. 4. The decline in acyl-CoA synthetase activity is thought to be the reason for the diminished rate of O(2) uptake with octanoate in senescence. The decline in carnitine acetyltransferase activity is considered to be the cause of the diminished rate of O(2) uptake with acetylcarnitine or with pyruvate plus malonate plus carnitine as substrate. The mechanism of the diminished rate of O(2) uptake with palmitoylcarnitine in senescence is discussed.  相似文献   

8.
The steady state levels of mitochondrial acyl-CoAs produced during the oxidation of pyruvate, alpha-ketoisovalerate, alpha-ketoisocaproate, and octanoate during state 3 and state 4 respiration by rat heart and liver mitochondria were determined. Addition of carnitine lowered the amounts of individual short-chain acyl-CoAs and increased CoASH in a manner that was both tissue- and substrate-dependent. The largest effects were on acetyl-CoA derived from pyruvate in heart mitochondria using either state 3 or state 4 oxidative conditions. Carnitine greatly reduced the amounts of propionyl-CoA derived from alpha-ketoisovalerate, while smaller effects were obtained on the branched-chain acyl-CoA levels, consistent with the latter acyl moieties being poorer substrates for carnitine acetyltransferase and also poorer substrates for the carnitine/acylcarnitine translocase. The levels of acetyl-CoA in heart and liver mitochondria oxidizing octanoate during state 3 respiration were lower than those obtained with pyruvate. The rate of acetylcarnitine efflux from heart mitochondria during state 3 (with pyruvate or octanoate as substrate, in the presence or absence of malate with 0.2 mM carnitine) shows a linear response to the acetyl-CoA/CoASH ratio generated in the absence of carnitine. This relationship is different for liver mitochondria. These data demonstrate that carnitine can modulate the aliphatic short-chain acyl-CoA/CoA ratio in heart and liver mitochondria and indicate that the degree of modulation varies with the aliphatic acyl moiety.  相似文献   

9.
Glycolyl-CoA can be formed during the course of the beta-oxidation by rat liver mitochondria of 4-hydroxybutyrate. The existence of this beta-oxidation has been previously supported by the occurrence of 4-hydroxybutyrate and its beta-oxidation catabolites in urine from patients with 4-hydroxybutyric aciduria, an inborn error of gamma-aminobutyric acid metabolism due to the deficiency of succinic semialdehyde dehydrogenase. The characteristics of the mitochondrial beta-oxidation of 4-hydroxybutyrate were, in rat liver, compared with those of the mitochondrial beta-oxidation of butyrate. The inhibition by malonate of the oxidation of 4-hydroxybutyrate was about twofold weaker than that of oxidation of butyrate, whereas both oxidations were abolished by preincubating the mitochondria with 1 mM valproic acid, a known inhibitor of mitochondrial beta-oxidation. Mitochondria from rat kidney cortex were demonstrated to catalyse, as previously shown for hepatic mitochondria, the carnitine-dependent oxidation of 12-hydroxylauroyl-CoA-omega-Hydroxymonocarboxylyl-CoAs are thus concluded to be precursors of glycolyl-CoA also in rat kidney cortex. In addition, 3-hydroxypyruvate was found to be a precursor of glycolyl-CoA, since it was oxidized by bovine heart pyruvate dehydrogenase with a cofactor requirement similar to that of pyruvate oxidation. Glycolyl-CoA was a substrate of carnitine acetyltransferase (pigeon breast muscle). Pig heart citrate synthase was capable of catalyzing the condensation of glycolyl-CoA with oxaloacetate. The product of this reaction induced low NADH production rates dependent on the addition of porcine heart aconitase and isocitrate dehydrogenase.  相似文献   

10.
A simple mathematical model is proposed to explain the inhibition of beta-oxidation and of the tricarboxylic acid cycle by excess of fatty acids. This model is based on the peculiar stoichiometry of beta-oxidation reactions, which accounts for the formation of dynamical traps for free CoA and its esters in the form of 3-ketoacyl-CoA derivatives. It follows from the analysis of the model that the fatty acids can produce 100% inhibition of respiration at some critical concentrations depending on their chain lengths. This conclusion was confirmed by experiments with rat liver mitochondria. The critical concentrations determined at high respiratory rates (85% of state 3 respiration) for palmitoylcarnitine, capric acid and caproic acid were found to be 0.45 mM, 1.8-2 mM and 3 mM, respectively.  相似文献   

11.
The steady state mitochondrial content of coenzyme A-SH (CoA), acetyl-CoA, succinyl-CoA, and long chain acyl-CoA has been determined during the oxidation of palmitoylcarnitine by rabbit heart mitochondria. Variation of the substrate concentration during ADP-stimulated (state 3) respiration varies the mitochondrial content of long chain acyl-CoA and the rate of O2 uptake, and permits the conclusion that the Km of beta oxidation for intramitochondrial long chain acyl-CoA is approximately 1 nmol/mg of mitochondrial protein. At near saturating concentrations of palmitoylcarnitine, plus L-malate, the addition of ADP causes a decrease in acetyl-CoA, an increase in CoA and succinyl-CoA, and no clear change in long chain acyl-CoA content. These changes reverse upon the depletion of ADP (state 3 leads to 4 transition). Similar changes in CoA, acetyl-CoA, and succinyl-CoA are seen during state 4 leads to 3 leads to 4 transitions with pyruvate plus L-malate and octanoate plus L-malate as substrates. These results suggest a limitation of flux by citrate synthase during the controlled oxidation of these three substrates. The ratio acetyl-CoA/succinyl-CoA was determined not only during state 3 and state 4 oxidation of palmitoylcarnitine plus L-malate and pyruvate plus L-malate, but also during intermediate respiratory states (state 3 1/2) generated by adding glucose and varying amounts of hexokinase. These intermediate states are characterized by a high succinyl-CoA content, relative to either state 3 or state 4, and a suboptimal flux through citrate synthase, estimated either by pyruvate disappearance or by O2 uptake.  相似文献   

12.
Mitochondrial metabolism of valproic acid   总被引:6,自引:0,他引:6  
J Li  D L Norwood  L F Mao  H Schulz 《Biochemistry》1991,30(2):388-394
The beta-oxidation of valproic acid (2-propylpentanoic acid), an anticonvulsant drug with hepatotoxic side effects, was studied with subcellular fractions of rat liver and with purified enzymes of beta-oxidation. 2-Propyl-2-pentenoyl-CoA, a presumed intermediate in the beta-oxidation of valproic acid, was chemically synthesized and used to demonstrate that enoyl-CoA hydratase or crotonase catalyzes its hydration to 3-hydroxy-2-propylpentanoyl-CoA. The latter compound was not acted upon by soluble L-3-hydroxyacyl-CoA dehydrogenases from mitochondria or peroxisomes but was dehydrogenated by an NAD(+)-dependent dehydrogenase associated with a mitochondrial membrane fraction. The product of the dehydrogenation, presumably 3-keto-2-propylpentanoyl-CoA, was further characterized by fast bombardment mass spectrometry. 3-Keto-2-propylpentanoyl-CoA was not cleaved thiolytically by 3-ketoacyl-CoA thiolase or a mitochondrial extract but was slowly degraded, most likely by hydrolysis. The availability of 2-propylpentanoyl-CoA (valproyl-CoA) and its beta-oxidation metabolites facilitated a study of valproate metabolism in coupled rat liver mitochondria. Mitochondrial metabolites identified by high-performance liquid chromatography were 2-propylpentanoyl-CoA, 3-keto-2-propylpentanoyl-CoA, 2-propyl-2-pentenoyl- CoA, and trace amounts of 3-hydroxy-2-propylpentanoyl-CoA. It is concluded that valproic acid enters mitochondria where it is converted to 2-propylpentanoyl-CoA, dehydrogenated to 2-propyl-2-pentenoyl-CoA by 2-methyl-branched chain acyl-CoA dehydrogenase, and hydrated by enoyl-CoA hydratase to 3-hydroxy-2-propylpentanoyl-CoA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The ability of carbohydrate fuels (lactate, pyruvate, glucose) and the ketone bodies (acetoacetate, beta-hydroxybutyrate) to compete with fatty acids as fuels of respiration in the isolated Langendorf-perfused heart was studied. Oleate and octanoate were used as fatty acid fuels since oleate requires carnitine for entry into mitochondria, whereas octanoate does not. The two ketone bodies inhibited the oxidation of both oleate and octanoate implying an intramitochondrial site of action. Pyruvate, lactate, and lactate plus glucose inhibited oleate oxidation but not octanoate oxidation, indicating a mechanism of inhibition that involves the carnitine system. Pyruvate was a more potent inhibitor than lactate at equal concentrations, but the effect of lactate could be greatly increased by dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase. The physiological and mechanistic implications of these observations are discussed.  相似文献   

14.
《Insect Biochemistry》1989,19(3):257-260
Mitochondria were isolated from the posterior region of the midgut of the tobacco hornworm, Manduca sexta. Measurements of mitochondrial oxygen consumption revealed that the oxidation of palmitoyl carnitine plus malate was inhibited by 3-mercaptopropionic acid (MPA) in a dose-dependent manner. The maximal percent inhibition was 65% and the I50 was 0.15mM. When exposed to a dose which maximally inhibits the oxidation of palmitoyl carnitine (0.5 mM), mitochondrial oxidation of octanoate and pyruvate were inhibited by 30 and 8%, respectively. Oxidation of succinate was unaffected under these conditions. These results indicate that MPA is an effective inhibitor of fatty acid oxidation in midgut mitochondria.  相似文献   

15.
K Y Tserng  S J Jin  C L Hoppel 《Biochemistry》1991,30(44):10755-10760
To study the structure-activity relationship between pentanoic acid analogues and the inhibition of fatty acid oxidation, a number of 4-pentenoic and methylenecyclopropaneacetic acid derivatives were prepared. All compounds inhibited palmitoylcarnitine oxidation in rat liver mitochondria, with 50% inhibition occurring at a concentration between 6 and 100 microM. However, only methylenecyclopropaneacetic acid (MCPA) and spiropentaneacetic acid (SPA) showed in vivo inhibitory activity in rats as indicated by the occurrence of dicarboxylic aciduria. Rats treated with SPA excreted metabolites derived only from fatty acid oxidation whereas MCPA-treated rats also excreted metabolites derived from branch-chained amino acid and lysine metabolism. SPA is a specific inhibitor of fatty acid oxidation without affecting amino acid metabolism. The site of inhibition is medium-chain acyl-CoA dehydrogenase (MCAD). In contrast, MCPA inhibited both MCAD and short-chain acyl-CoA dehydrogenase with a stronger inhibition toward the latter. The inhibition of fatty acid oxidation by both inhibitors was partially reversible by glycine or l-carnitine. Since SPA does not form a ring-opened nucleophile such as that proposed for MCPA in the inhibition of FAD prosthetic group in acyl-CoA dehydrogenases, we propose that the irreversible inhibition by SPA occurs by a tight complex without forming a covalent bond to the isoalloxazine ring in FAD.  相似文献   

16.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   

17.
We have used radio-high pressure liquid chromatography to study the acyl-CoA ester intermediates and the acylcarnitines formed during mitochondrial fatty acid oxidation. During oxidation of [U-14C]hexadecanoate by normal human fibroblast mitochondria, only the saturated acyl-CoA and acylcarnitine esters can be detected, supporting the concept that the acyl-CoA dehydrogenase step is rate-limiting in mitochondrial beta-oxidation. Incubations of fibroblast mitochondria from patients with defects of beta-oxidation show an entirely different profile of intermediates. Mitochondria from patients with defects in electron transfer flavoprotein and electron transfer flavoprotein:ubiquinone oxido-reductase are associated with slow flux through beta-oxidation and accumulation of long chain acyl-CoA and acylcarnitine esters. Increased amounts of saturated medium chain acyl-CoA and acylcarnitine esters are detected in the incubations of mitochondria with medium chain acyl-CoA dehydrogenase deficiency, whereas long chain 3-hydroxyacyl-CoA dehydrogenase deficiency is associated with accumulation of long chain 3-hydroxyacyl- and 2-enoyl-CoA and carnitine esters. These studies show that the control strength at the site of the defective enzyme has increased. Radio-high pressure liquid chromatography analysis of intermediates of mitochondrial fatty acid oxidation is an important new technique to study the control, organization and defects of the enzymes of beta-oxidation.  相似文献   

18.
1. The effects of 3-, 4- and 5-thia-substituted fatty acids on mitochondrial and peroxisomal beta-oxidation have been investigated. When the sulphur atom is in the 4-position, the resulting thia-substituted fatty acid becomes a powerful inhibitor of beta-oxidation. 2. This inhibition cannot be explained in terms of simple competitive inhibition, a phenomenon which characterizes the inhibitory effects of 3- and 5-thia-substituted fatty acids. The inhibitory sites for 4-thia-substituted fatty acids are most likely to be the acyl-CoA dehydrogenase in mitochondria and the acyl-CoA oxidase in peroxisomes. 3. The inhibitory effect of 4-thia-substituted fatty acids is expressed both in vitro and in vivo. The effect in vitro is instantaneous, with up to 95% inhibition of palmitoylcarnitine oxidation. The effect in vivo, in contrast, is dose-dependent and increases with duration of treatment. 4. Pretreatment of rats with a 3-thia-substituted fatty acid rendered mitochondrial beta-oxidation less sensitive to inhibition by 4-thia-substituted fatty acids.  相似文献   

19.
Oxidative phosphorylation analysis, performed on freshly-isolated mitochondria, assesses the integrated function of the electron transport chain (ETC) coupled to ATP synthesis, membrane transport, dehydrogenase activities, and the structural integrity of the mitochondria. In this review, a case study approach is employed to highlight detection of defects in the adenine nucleotide translocator, the pyruvate dehydrogenase complex, fumarase, coenzyme Q function, fatty acid metabolism, and mitochondrial membrane integrity. Our approach uses the substrates glutamate, pyruvate, 2-ketoglutarate (coupled with malonate), malate, and fatty acid substrates (palmitoylcarnitine, octanoylcarnitine, palmitoyl-CoA (with carnitine), octanoyl-CoA (with carnitine), octanoate and acetylcarnitine) in addition to succinate, durohydroquinone and TMPD/ascorbate to uncover metabolic defects that would not be apparent from ETC assays performed on detergent-solubilized mitochondria.  相似文献   

20.
The degradation of elaidic acid (9-trans-octadecenoic acid), oleic acid, and stearic acid by rat mitochondria was studied to determine whether the presence of a trans double bond in place of a cis double bond or no double bond affects beta-oxidation. Rat mitochondria from liver or heart effectively degraded the coenzyme A derivatives of all three fatty acids. However, with elaidoyl-CoA as a substrate, a major metabolite accumulated in the mitochondrial matrix. This metabolite was isolated and identified as 5-trans-tetradecenoyl-CoA. In contrast, little or none of the corresponding metabolites were detected with oleoyl-CoA or stearoyl-CoA as substrates. A kinetic study of long-chain acyl-CoA dehydrogenase (LCAD) and very long-chain acyl-CoA dehydrogenase revealed that 5-trans-tetradecenoyl-CoA is a poorer substrate of LCAD than is 5-cis-tetradecenoyl-CoA, while both unsaturated acyl-CoAs are poor substrates of very long-chain acyl-CoA dehydrogenase when compared with myristoyl-CoA. Tetradecenoic acid and tetradecenoylcarnitine were detected by gas chromatography/mass spectrometry and tandem mass spectrometry, respectively, when rat liver mitochondria were incubated with elaidoyl-CoA but not when oleoyl-CoA was the substrate. These observations support the conclusion that 5-trans-tetradecenoyl-CoA accumulates in the mitochondrial matrix, because it is less efficiently dehydrogenated by LCAD than is its cis isomer and that the accumulation of this beta-oxidation intermediate facilitates its hydrolysis and conversion to 5-trans-tetradecenoylcarnitine thereby permitting a partially degraded fatty acid to escape from mitochondria. Analysis of this compromised but functional process provides insight into the operation of beta-oxidation in intact mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号