共查询到20条相似文献,搜索用时 0 毫秒
1.
D Joseleau-Petit 《Biochimie》1985,67(1):45-58
This review summarizes present knowledge of the bacterial cell cycle with particular emphasis on Escherichia coli. We discuss data coming from three different types of approaches to the study of cell extension and division: The search for discrete events occurring once per division cycle. It is generally agreed that the initiation and termination of DNA replication and cell septation are discrete events; there is less agreement on the sudden doubling in rate of cell surface extension, murein biosynthesis and the synthesis of membrane proteins and phospholipids. We discuss what is known about the temporal relationship amongst the various cyclic events studied. The search for discrete growth zones in the cell envelope layers. We discuss conflicting reports on the existence of murein growth zones and protein insertion sites in the inner and outer membranes. Elucidation of the mechanism regulating the initiation of DNA replication. The concept of "critical initiation mass" is examined. We review data suggesting that the DNA is attached to the envelope and discuss the role of the latter in the initiation of DNA replication. 相似文献
2.
Lipid synthesis was examined in Escherichia coli cells at different stage of cell division. Exponentially growing cells were pulse-labeled with appropriate isotopes for 0.1 generation time, inactivated, and separated by size on a sucrose gradient. An abrupt increase in the rate of lipid synthesis occurred which was coincident with the initiation of cross walls. In contrast, the rate of protein synthesis during this same interval remained constant, resulting in an increased lipid/protein ratio in dividing cells. No changes in the composition of phospholipid head groups, fatty acids, or phospholipid molecular species were observed in cells at different stages of division. The observed increase in the rate of lipid synthesis may reflect a means by which the activities of membrane-associated enzymes are modulated during cross wall formation. 相似文献
3.
The logic of Escherichia coli's responses to environmental changes gives hope that its cell cycle will be equally well designed. During growth in a constant environment, internal signals trigger cell-cycle events such as replication initiation and cell division. Internal signals must also provide the cell with information about its present state, enabling it to coordinate the synthesis of cytoplasm, DNA and cell wall and maintain proper cell shape and composition. How the cell regulates these aspects of its growth is a fascinating--and as yet unfinished--story. 相似文献
4.
Changes in the composition of membrane phospholipids during the cell cycle of Escherichia coli 总被引:2,自引:0,他引:2
Phospholipid concentrations have been estimated throughout the successive cell cycle in synchronously growing culture of E. coli B/r. Total phospholipid phosphorus was shown to be doubled in the period of time between two cell divisions, whereas during the division itself it did not change. Phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) exhibit a stepwise increase during the cell cycle. It should be noted that the phase of accumulation of these lipids could shift depending on the duration of the cell cycle. The fall in level of PE was followed by a short-term increase (5-10 min). At the same time the level of cardiolipin was observed to be significantly increased. 相似文献
5.
6.
Biosynthesis and membrane topography of the neural cell adhesion molecule L1. 总被引:21,自引:3,他引:21
下载免费PDF全文

A Faissner D B Teplow D Kübler G Keilhauer V Kinzel M Schachner 《The EMBO journal》1985,4(12):3105-3113
The biosynthesis and membrane topography of the neural cell adhesion molecule L1 have been studied in cerebellar cell cultures by metabolic labeling and immunoprecipitation. Pulse and pulse-chase experiments with [35S]methionine show that L1 is synthesized in its high mol. wt. form, the 200 kd component. The lower mol. wt. components with 40, 80 and 140 K apparent mol. wts. can be generated by proteolysis in intact cellular membranes. Peptide maps generated by protease treatment of L1 isolated from adult mouse brain show that the 80 and 140 kd components are related to the 200 kd component, but not to each other. The 200, 80 and 40 kd components can be biosynthetically phosphorylated. The 140 kd component is not phosphorylated and not released from the surface membrane during tryspinization. The phosphorylated amino acid is serine. In the presence of tunicamycin the 200 kd component is synthesized as a 150 kd protein. Pulse-chase experiments in the presence of tunicamycin indicate that the carbohydrate moieties are predominantly N-glycosidically linked and that the contribution of O-glycosylation is minimal. The carbohydrate moieties are of the complex type as shown by treatment with endoglycosidase H. Since monensin inhibits processing of the carbohydrate moieties, the 200 kd component appears to be transported to the surface membrane via the Golgi apparatus. 相似文献
7.
D Mirelman Y Yashouv-Gan Y Nuchamovitz S Rozenhak E Z Ron 《Journal of bacteriology》1978,134(2):458-461
The last stages of murein biosynthesis were studied in relation to the division cycle of Escherichia coli in cells synchronized by amino acid starvation (Ron et al., J. Bacteriol. 123:374--376, 1975). Murein synthesis and the activities of the D-alanine carboxypeptidase and transpeptidase were found to vary significantly during the cell cycle. Maximal synthesis and transpeptidation were observed immediately after cell division, whereas maximal D-alanine carboxypeptidase activity was detected before cell division. These results are in agreement with our earlier findings that before cell division there is a stage of increased hydrolysis of the C-terminal D-alanine moiety of newly synthesized murein strands. 相似文献
8.
Inducibility of metallothionein throughout the cell cycle. 总被引:1,自引:0,他引:1
Synchronized Chinese hamster cells were induced with ZnCl2 at multiple stages of the cell cycle and labeled with [35S]cysteine, and the 35S-labeled proteins were isolated and separated into metallothionein and nonmetallothionein fractions. Metallothionein was found to be inducible in all stages of the cell cycle and in G1-arrested cells. 相似文献
9.
We applied proteomics technologies to analyze a membrane preparation of Escherichia coli, wild type strain and of transformants expressing human cytochrome P450s. The proteins were analyzed by two-dimensional electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry. The membrane proteins were solubilized with both mild detergents such as CHAPS and strong detergents, such as sodium and lithium dodecyl sulfate, sodium cholate and sodium deoxycholate. In the E. colimembrane fraction, 394 different gene products were identified. Approximately 28% of them were predicted to be integral membrane proteins, of which 100 proteins have been predicted to carry one transmembrane region, ten proteins to carry two, and two proteins to include three transmembrane domains. The remaining are probably membrane-associated and cytosolic proteins. Cytochrome P450s did not enter the immobilized pH gradient strips but were efficiently analyzed in a two-dimensional, two-detergent system. Use of strong solubilizing agents resulted in the detection of about 20 membrane proteins, which were not detected following extraction with mild detergents and chaotropes. The present database is one of the largest for membrane proteins. 相似文献
10.
The hemimethylated oriC binding activity of the E. coli heavy density membrane fraction (outer membrane) was investigated by DNase I footprinting experiments using membranes obtained from different replication stages of PC-2 (dnaCts) cells. The maximal binding activity was found at the beginning of replication cycle and then decreased gradually. The same pattern of variation was observed with SeqA protein detected in the membranes by immunoblotting. Both binding activity and the presence of SeqA were conserved in the outer membrane even after floating centrifugation of the heavy density membrane fraction in a sucrose gradient, indicating that SeqA in fact can associate with the membrane and that this association varies according to replication cycle. Site specific binding to hemimethylated oriC, of the heavy density membrane obtained from seqA mutant, could be restored by addition of a low amount of His-tagged SeqA protein. 相似文献
11.
Areas of adhesion between wall and membrane of Escherichia coli 总被引:71,自引:0,他引:71
M E Bayer 《Journal of general microbiology》1968,53(3):395-404
12.
V Norris 《Journal of theoretical biology》1989,139(1):117-128
Phospholipids are the principal constituents of biological membranes. In Escherichia coli, phospholipids are involved in the metabolism of other envelope constituents such as lipoprotein, lipopolysaccharide, certain envelope proteins and peptidoglycan. They are also involved in the regulation of the cell cycle. DNAA, the key protein in the initiation of chromosome replication, is activated by acidic phospholipids only when these are in fluid bilayers, whilst interruptions of phospholipid synthesis inhibit both the initiation of chromosome replication and cell division. The transmembrane movement or flip-flop of phospholipids from one monolayer to the other requires the passage of the polar head group through the hydrophobic core of the bilayer. Hence, in many systems, flip-flop is a slow process with half-time of days. Flip-flop accompanies the formation of non-bilayer structure. Such structures form under certain conditions of packing density and composition and have been observed both in vitro and in vivo. In bacteria, flip-flop appears to be extremely rapid, with half-times as fast as 3 min being observed. However, such rapid flip-flop may not be characteristic of all phospholipids. The asymmetrical distribution of phosphatidylethanolamine in the plasma membrane of Bacillus megaterium has been attributed to the existence of two classes of this phospholipid. In E. coli, studies of the metabolic turnover of phosphatidylserine, phosphatidylglycerol and phosphatidic acid also reveal the existence of distinct classes of these phospholipids. In this article I propose that, in E. coli, a class of phospholipids does indeed escape the rapid flip-flop mechanism; this class probably includes a subpopulation of the acidic phospholipids. Therefore during the cell cycle these phospholipids accumulate in the inner monolayer of the cytoplasmic membrane and so cause an increase in its packing density; at a critical density, phospholipids "flip out" from the inner to the outer monolayer. This flip-out occurs once per cycle and initiates cell cycle events. 相似文献
13.
Association of thioredoxin with the inner membrane and adhesion sites in Escherichia coli. 总被引:4,自引:5,他引:4
下载免费PDF全文

The intracellular localization of thioredoxin in Escherichia coli was determined by immunoelectron microscopy and correlated to previous biochemical data which had suggested that thioredoxin resides at inner-outer membrane adhesion sites. Since a considerable amount of thioredoxin was lost during preparation of cells for electron microscopy, we immobilized the protein with the heterobifunctional photoactivatable cross-linker p-azidophenacylbromide before the cells were fixed with aldehyde and embedded in Lowicryl K4M. Thin sections were labeled with affinity-purified antithioredoxin antiserum and protein A-gold complexes. Densities of immunolabel in a designated membrane-associated area and in the rest of the cytoplasm were compared and the data were statistically evaluated. Wild-type strain W3110 and strain SK3981, an overproducer of thioredoxin, exhibited increased labeling at the inner membrane and its adjacent cytoplasmic area. In contrast, the more centrally located cytoplasm of both strains showed much lower label density. This label distribution did not change with cell growth or in the stationary phase. Immunolabel was often found at bridges between the inner and outer membranes; this result is consistent with a model which places at least a portion of the thioredoxin at membrane adhesion sites, corresponding to an osmotically sensitive cytoplasmic compartment bounded by a hybrid inner-outer membrane (C.A. Lunn and V. Pigiet, J. Biol. Chem. 257:11424-11430, 1982; C.A. Lunn and V. Pigiet, J. Biol. Chem. 261:832-838, 1986). Specific label was absent in the periplasmic space. 相似文献
14.
15.
It is generally accepted that during fast growth of Escherichia coli, the time (D) between the end of a round of DNA replication and cell division is constant. This concept is not consistent with the fact that average cell mass of a culture is an exponential function of the growth rate, if it is also accepted that average cell mass per origin of DNA replication (Mi) changes with growth rate and negative exponential cell age distribution is taken into account. Data obtained from cell composition analysis of E. coli OV-2 have shown that not only (Mi) but also D varied with growth rate at generation times () between 54 and 30 min. E. coli OV-2 is a thymine auxotroph in which the replication time (C) can be lengthened, without inducing changes in , by growth with limiting amounts of thymine. This property has been used to study the relationship between cell size and division from cell composition measurements during growth with different amounts of thymine. When C increased, average cell mass at the end of a round of DNA replication also increased while D decreased, but only the time lapse (d) between the end of a replication round and cell constriction initiation appeared to be affected because the constriction period remained fairly constant. We propose that the rate at which cells proceed to constriction initiation from the end of replication is regulated by cell mass at this event, big cells having shorter d times than small cells.Abbreviations OD450 and OD630
Optical density at a given wavelength in nm
Dedicated to Dr. John Ingraham to honor him for his many contributions to Science 相似文献
16.
Membranes of animal cells. V. Biosynthesis of the surface membrane during the cell cycle 总被引:6,自引:0,他引:6
KB cells grown in suspension culture were synchronized by using a double thymidine block. At various times throughout the life cycle aliquots of cells were pulsed with 14C-L-leucine, 14C-D-glucosamine and 14C-choline for one hour periods. Surface membranes, cell particulates and soluble proteins were isolated and their 14C specific activities were determined. It was found that there was a marked increase in the rate of incorporation into surface membrane just after division. The pattern of incorporation was the same for all three isotopic precursors. The rate of incorporation of isotopic precursors into soluble proteins was constant throughout the cycle. Some increase in rate of incorporation of isotope into the particulate fraction was observed during division. 相似文献
17.
A particulate fraction derived from bacterial cells stimulates septation in irradiated Escherichia coli lon mutants when added to postirradiation plating media. It was established that the particles are derived from the cytoplasmic membrane and that they have been partially purified by sucrose density gradient centrifugation. These particles also contain the cytochrome-based respiratory activity of the cell. A variety of experiments established a correlation between the septation-promoting activity of the particles and their ability to remove oxygen from the postirradiation plating medium. It was suggested that the efficient removal of oxygen from the medium allowed the lon cells to repair radiation-induced damage to the septation mechanism. 相似文献
18.
Chemical cross-linking of thioredoxin to hybrid membrane fraction in Escherichia coli 总被引:3,自引:0,他引:3
Thioredoxin was cross-linked to a membrane fraction in vivo using the heterobifunctional photoreactive cross-linking reagent p-azidophenacyl bromide, chosen to couple thioredoxin via its highly reactive thiol. Under mild reaction conditions, a significant amount of thioredoxin (30%) was rapidly cross-linked to the crude membrane fraction. The cross-linking reaction was selective, with thioredoxin purified 15-fold in the cross-linked membrane fraction. Membrane fractionation studies showed that thioredoxin associated with the inner membrane and with a hybrid membrane fraction. This hybrid membrane fraction banded at a density between the inner and outer membranes. This result is consistent with the localization of thioredoxin in association with the bacterial membrane adhesion sites first described by Bayer (Bayer, M. (1968) J. Gen. Microbiol. 53, 395-404). Association of thioredoxin with the membrane adhesion sites defines a structure corresponding to the osmotically sensitive cytoplasmic compartment (Lunn, C. A., and Pigiet, V. (1982) J. Biol. Chem. 257, 11424-11430). 相似文献
19.
Abstract Both the intracellular and the extracellular concentration of cyclic AMP increases logarithmically in synchronously growing cultures of Escherichia coli . Thus, cyclic AMP by itself cannot regulate growth and division of the bacterium during the cell cycle. 相似文献
20.
Bernd Kneidinger Cristina Marolda Michael Graninger Alla Zamyatina Fiona McArthur Paul Kosma Miguel A Valvano Paul Messner 《Journal of bacteriology》2002,184(2):363-369
The steps involved in the biosynthesis of the ADP-L-glycero-beta-D-manno-heptose (ADP-L-beta-D-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-D-beta-D-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-D-beta-D-heptose. Our results demonstrate that the synthesis of ADP-D-beta-D-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase), and GmhB (D,D-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-L-beta-D-heptose precursor utilized in the assembly of inner core LPS. 相似文献