首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We showed that the heat killing curve for exponentially growing Saccharomyces cerevisiae was biphasic. This suggests two populations of cells with different thermal killing characteristics. When exponentially growing cells separated into cell cycle-specific fractions via centrifugal elutriation were heat shocked, the fractions enriched in small unbudded cells showed greater resistance to heat killing than did other cell cycle fractions. Cells arrested as unbudded cells fell into two groups on the basis of thermotolerance. Sulfur-starved cells and the temperature-sensitive mutants cdc25, cdc33, and cdc35 arrested as unbudded cells were in a thermotolerant state. Alpha-factor-treated cells arrested in a thermosensitive state, as did the temperature-sensitive mutant cdc36 when grown at the restrictive temperature. cdc7, which arrested at the G1-S boundary, arrested in a thermosensitive state. Our results suggest that there is a subpopulation of unbudded cells in exponentially growing cultures that is in G0 and not in G1 and that some but not all methods which cause arrest as unbudded cells lead to arrest in G0 as opposed to G1. It has been shown previously that yeast cells acquire thermotolerance to a subsequent challenge at an otherwise lethal temperature during a preincubation at 36 degrees C. We showed that this acquisition of thermotolerance was corrected temporally with a transient increase in the percentage of unbudded cells during the preincubation at 36 degrees C. The results suggest a relationship between the heat shock phenomenon and the cell cycle in S. cerevisiae and relate thermotolerance to transient as well as to more prolonged residence in the G0 state.  相似文献   

2.
R Cavicchioli  K Watson 《FEBS letters》1986,207(1):149-152
Yeast cells when subjected to a primary heat shock, defined as a temperature shift from 23 to 37 degrees C for 30 min, acquired tolerance to heat stress (52 degrees C/5 min). Primary heat shocked cells incubated at 23 degrees C for up to 3 h, progressively lost thermotolerance but retained high levels of the major heat-shock proteins as observed on polyacrylamide gels. On the other hand, a temperature shift back up to 37 degrees C for 30 min fully restored thermotolerance. The major high-molecular-mass heat-shock proteins (hsp) identified were of approximate molecular mass 100 kDa (hsp 100), 80 kDa (hsp 80) and 70 kDa (hsp 70). The results indicate that loss of heat-shock acquisition of thermotolerance is not correlated with loss of heat-shock proteins.  相似文献   

3.
In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.  相似文献   

4.
Cells of the yeast Saccharomyces cerevisiae are known to acquire thermotolerance in response to the stresses of starvation or heat shock. We show here through the use of cell cycle inhibitors that blockage of yeast cells in the G1, S, or G2 phases of the mitotic cell cycle is not a stress that induces thermotolerance; arrested cells remained as sensitive to thermal killing as proliferating cells. These G1- or S-phase-arrested cells were unimpaired in the acquisition of thermotolerance when subjected to a mild heat shock by incubation at 37 degrees C. One cell cycle inhibitor, o-phenanthroline, did in fact cause cells to become thermotolerant but without induction of the characteristic pattern of heat shock proteins. Thermal induction of heat shock protein synthesis was unaffected; the o-phenanthroline-treated cells could still synthesize heat shock proteins upon transfer to 37 degrees C. Use of a novel mutant conditionally defective only for the resumption of proliferation from stationary phase (M. A. Drebot, G. C. Johnston, and R. A. Singer, Proc. Natl. Acad. Sci. USA 84:7948-7952, 1987) indicated that o-phenanthroline inhibition produces a stationary-phase arrest, a finding which is consistent with the increased thermotolerance and regulated cessation of proliferation exhibited by the inhibited cells. These findings show that the acquired thermotolerance of cells is unrelated to blockage of the mitotic cell cycle or to the rapid synthesis of the characteristic spectrum of heat shock proteins.  相似文献   

5.
Preheating at 31 degrees C induces thermotolerance in Paracentrotus lividus embryos, which therefore become able to withstand 1-h treatment at the otherwise lethal temperature of 35 degrees C, and to develop normally. The acquisition of thermotolerance is positively correlated with the amount of heat shock proteins produced during the 31 degrees C treatment. Evidence is provided that the heat shock proteins, although present in the embryo for long periods after synthesis, lose their effect on thermotolerance within 3 h of the cessation of synthesis.  相似文献   

6.
Acquisition of thermotolerance in response to a preconditioning heat treatment at 40 degrees C was studied in mutants of the yeast Saccharomyces cerevisiae lacking a specific heat shock protein or the ability to synthesize proteins at 40 degrees C. A mutant carrying a deletion of heat shock protein hsp 104 and the corresponding wildtype strain were both highly sensitive to heat stress at 50.4 degrees C without preconditioning but both acquired almost the same level of thermotolerance after 60 min of preconditioning. Both strains showed equal induction of trehalose-6-phosphate synthase and accumulated equal levels of trehalose during the treatment. The conditional mutant ts--187 synthesized no proteins during the preconditioning heat treatment but nevertheless acquired thermotolerance, albeit to a lesser degree than the corresponding wildtype strain. Induction of trehalose-6-phosphate synthase and accumulation of trehalose were reduced to a similar extent. These results show that acquisition of thermotolerance and accumulation of trehalose are closely correlated during heat preconditioning and are modulated by protein synthesis but do not require it.  相似文献   

7.
8.
9.
The action mechanism of the mitochondrial inhibitor sodium azide on thermotolerance in Saccharomyces cerevisiae was studied. At ambient growth temperature, pretreatment with sodium azide was shown to improve the thermotolerance of parent cells and the hsp104 mutant. Treating with the inhibitor during a mild heat shock suppressed the development of induced thermotolerance due to the inhibition of heat shock protein (Hsp104) synthesis. Treating with the inhibitor immediately before lethal heat shock produced a variety of effects on thermotolerance depending on whether the yeast metabolism was oxidative or fermentative. The conclusions are: (1) the protective effect of sodium azide on the thermotolerance of S. cerevisiae cells grown on glucose-containing medium is not related to Hsp104 functioning, and (2) the mechanisms of basic and induced thermotolerance differ considerably.  相似文献   

10.
Heat shock proteins (hsps) were identified in a cell line from the Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae) exposed to elevated temperatures. Cells produced three hsps (Mr 87,000, 69,000, and 34,000) in response to a temperature shift from 26 degrees C to 37 degrees C (30-60 min) with a concomitant decrease in synthesis of most other cellular proteins. Synthesis of low Mr hsps was not evident. The heat shock response is triggered within 30 min at temperatures from 33 degrees C to 41 degrees C. At temperatures greater than 41 degrees C protein synthesis was shut down. Within 2-3 h after return to 26 degrees C, synthesis of proteins repressed at the higher temperatures resumed production while the major hsps disappear. Heat shock proteins were not produced in the presence of actinomycin D. Evaluations on the role of hsps in conferring thermotolerance to the cells showed an increase in cell viability in heat-shocked cells over non-heat-shocked cells (after 3 and 10 days) when subsequently placed at 45 degrees C for 1 h, a normally lethal temperature. Heat shock alone had little effect on subsequent cell viability or growth at 26 degrees C. These results suggest that hsps produced by these cells may aid in the maintenance of cell integrity and thus play a transitory role in thermotolerance.  相似文献   

11.
To investigate whether sublethal heat shock protects Perkinsus marinus (Dermo)-infected oysters Crassostrea virginica from lethal heat stress, and the effects of P. marinus infection on sublethal heat shock response, oysters were first experimentally challenged with P. marinus. Then, when infections in oysters progressed to moderate levels (parasite burden = 10(4) to 10(5) cells g(-1) wet tissue weight), oysters were treated with a sublethal heat shock at 40 degrees C for 1 h (heat shock + Dermo challenge). Other treatment groups included heat-shocked, unchallenged (non-P. marinus challenged) oysters and non-heat-shocked, P. marinus-challenged and -unchallenged oysters. Thermal tolerance was compared among these treatments by administering a lethal heat treatment at 44 degrees C for 1 h, 7 d after sublethal heat shock. Sublethal heat shock enhanced survival to lethal heat treatment in both P. marinus-challenged and -unchallenged oysters. Although levels of hsp70 isoforms (hsp69 and hsp72) did not vary significantly by heat shock or infection with P. marinus, responses due to these treatments were apparent when comparing hsp70 levels within infected and uninfected oysters. Infection enhanced expression of hsp69, regardless of whether oysters were heat shocked or not. In uninfected oysters, hsp72 increased due to heat shock 2 and 7 d post heat shock. Overall, this study demonstrates that heat shock can improve survival in oysters, even in oysters infected with P. marinus. Expression of hsp70 varied among isoforms after sublethal and lethal heat shocks and in infected and uninfected oysters. The heat shock response was not negatively affected by P. marinus infection.  相似文献   

12.
13.
Synchronized regulation of cell division during gastrulation is essential for the regional proliferation of cells and pattern formation of the early CNS. The neural plate and neuroectoderm cells are a rapidly dividing and differentiating population of cells with a unique and rapid heat-shock response. Heat shock and the heat-shock genes were studied during neural plate development in a whole rat embryo culture system at 9.5-11.5 days. A lethal heat shock can cause cell death and severe developmental defects to the forebrain and eye during organogenesis. Heat shock can also result in acquired thermotolerance whereby cell progression is delayed at the G1/S and S/G2 boundaries of the cell cycle. This delay in cell cycle progression caused an overall lengthening of the cell cycle time of at least 2 hr. The heat shock genes may therefore function as cell cycle regulators in neuroectoderm induction and differentiation. The kinetics and expression of the hsp genes were examined in neuroectodermal cells by flow cytometry and Northern analysis. The levels of hsp mRNA 27, 71, 73, and 88 were identified following exposure at 42°C (nonlethal), 43deg;C (lethal) and 42deg;/43deg;C (thermotolerant) heat shock. Examination of hsp gene expression in the neural plate showed tight regulation in the cell cycle phases. Hsp 88 expression was enhanced at Go and hsp71 induction at G2 + M of the cell cycle. Cells exposed to a thermotolerant heat shock of 42deg;C induced hsp71 mRNA expression in all phases of the cell cycle with the mRNA levels of hsp27, 73, and 88 increased but relatively constant. Following a lethal heat shock, dramatic changes in hsp expression were seen especially enhanced hsp71 induction in late S phase. The regulated expression of hsps during the cell cycle at various phases could play a unique and important role in the fate and recovery of neuroectoderm cells during early mammalian embryo development. © 1993Wiley-Liss, Inc.  相似文献   

14.
Non‐lethal heat‐shock (HS) treatment has previously been shown to induce thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. This acquired thermotolerance correlates with the de novo synthesis of heat‐shock proteins (HSPs). Interestingly, we found that ethanol treatments also elicited HS‐like responses in aetiolated soybean seedlings at their normal growth temperature of 28 °C. Northern blot analyses revealed that the expression of HS genes hsp17.5, hsp70 and hsc 70 was induced by ethanol. Radioactive amino acids were preferentially incorporated into high molecular weight (HMW) HSPs rather than class I low molecular weight (LMW) HSPs during non‐lethal ethanol treatments. Immunoblot analysis confirmed that no accumulation of class I LMW HSPs occurred after non‐lethal ethanol treatment. Pre‐treatment with a non‐lethal dose of ethanol did not provide thermotolerance, as the aetiolated soybean seedlings could not survive a subsequent heat shock of 45 °C for 2 h. In contrast, non‐lethal HS pre‐treatment, 40 °C for 2 h, conferred tolerance on aetiolated soybean seedlings to otherwise lethal treatments of 7·5% ethanol for 8 h or 10% ethanol for 4 h. These results suggest that plant class I LMW HSPs may play important roles in providing both thermotolerance and ethanol tolerance.  相似文献   

15.
Studies were initiated to determine the extent to which reduced glutathione (GSH) may be involved in the capacity of cultured rat embryos to develop heat-induced tolerance to the deleterious effects of exposure to high temperatures (heat shock). Investigations of the modulation of dysmorphogenic responses of embryos to heat shock (43 degrees C, 30 min) as well as to the expression of the hsp70 gene and subsequent formation of hsps indicated that the acquisition of thermotolerance by rat embryos could be significantly influenced by the inhibition of GSH synthesis. Treatment of conceptuses with L-buthionine-S,R-sulfoximine (BSO) reduced intracellular GSH concentrations and compromised the capacity of embryos to mount a thermotolerance response as assessed by alterations in indices of growth and development. Embryonic thermotolerance elicited by preexposure to 42 degrees C for 30 min was accompanied by increases in GSH to levels greater than those measured in control embryos at 37 degrees C just prior to the subsequent 43 degrees C heat exposure. Expression of hsp70 mRNA was detectable soon after elevation of the temperature to 42 degrees C and reached its highest level of accumulation 1.5 hr after the 43 degrees C heat shock. BSO treatment had little if any effect on hsp70 message levels or on the synthesis of hsp70. The fact that BSO-treatment attenuated the thermotolerance response but did not produce a decrease in hsp70 RNA or the synthesis of hsp70 suggests that hsp70 alone is not sufficient to confer thermotolerance upon cultured rat embryos.  相似文献   

16.
Postimplantation stage rat embryos (6-10 somites) undergo abnormal development after exposure to a temperature of 43 degrees C for 30 min. A heat shock of 43 degrees C for 30 min also induces the synthesis of a set of eight heat shock proteins (hsps) with molecular masses ranging from 28,000 to 82,000 Da. The synthesis of these hsps is rapidly induced after the heat shock is applied and rapidly decays after embryos are returned to 37 degrees C. A heat shock of 42 degrees C for 30 min has no effect on rat embryo growth and development, but does induce the synthesis of three hsps. The most prominent of these three is believed to be the typical mammalian 70 kDa hsp. Furthermore, a 42 degrees C, 30-min heat shock followed by a 43 degrees C 30-min heat shock leads to partial protection from the embryotoxic effects of a single exposure at 43 degrees C, i.e., thermotolerance.  相似文献   

17.
Sung DY  Guy CL 《Plant physiology》2003,132(2):979-987
Hsp70s function as molecular chaperones. The protective chaperone activities of hsp70 help to confer tolerance to heat, glucose deprivation, and drought. Overexpression of hsp70s in many organisms correlates with enhanced thermotolerance, altered growth, and development. To better understand the roles of hsp70 proteins in Arabidopsis, the molecular and physiological consequences of altered expression of the major heat shock cognate, Hsc70-1, were analyzed. Extensive efforts to achieve underexpression of Hsc70-1 mRNA using a full-length antisense cDNA resulted in no viable transgenic plants, suggesting that reduced expression is lethal. Constitutive overexpression of Hsc70-1 also appeared to be deleterious to viability, growth, and development because fewer transformants were recovered, and most were dwarfed with altered root systems. Despite being dwarfed, the overexpression plants progressed normally through four selected developmental stages. Heat treatment revealed that Hsc70-1 overexpression plants were more tolerant to heat shock (44 degrees C for 10 min). The elevated basal levels of HSC70-1 in transgenic plants led to delayed heat shock response of several heat shock genes. The data in this study suggest that tight regulation of Hsc70-1 expression is critical for the viability of Arabidopsis and that the functions of HSC70-1 contribute to optimum growth, development, thermotolerance, and regulation of the heat shock response.  相似文献   

18.
In this study we have investigated the acquisition of thermotolerance in a Xenopus laevis kidney A6 epithelial cell line at both the level of cell survival and translation. In cell survival studies, A6 cells were incubated at temperatures ranging from 22 to 35 degrees degrees C for 2 h followed by a thermal challenge at 39 degrees degrees C for 2 h and a recovery period at 22 degrees C for 24 h. Optimal acquisition of thermotolerance occurred at 33 degrees degrees C. For example, exposure of A6 cells to 39 degrees degrees C for 2 h resulted in only 3.4% survival of the cells whereas prior exposure to 33 degrees C for 2 h enhanced the survival rate to 69%. This state of thermotolerance in A6 cells was detectable after 1 h at 33 degrees C and was maintained even after 18 h of incubation. Cycloheximide inhibited the acquisition of thermotolerance at 33 degrees C suggesting the requirement for ongoing protein synthesis. The optimal temperature for the acquisition of translational thermotolerance also occurred at 33 degrees C. Treatment of A6 cells at 39 degrees C for 2 h resulted in an inhibition of labeled amino acid incorporation into protein which recovered to approximately 14% of control after 19 h at 22 degrees C whereas cells treated at 33 degrees C for 2 h prior to the thermal challenge recovered to 58% of control levels. These translationally thermotolerant cells displayed relatively high levels of the heat shock proteins hsp30, hsp70, and hsp90 compared to pretreatment at 22, 28, 30, or 35 degrees C. These studies demonstrate that Xenopus A6 cells can acquire a state of thermotolerance and that it is correlated with the synthesis of heat shock proteins.  相似文献   

19.
《The Journal of cell biology》1984,99(4):1441-1450
A heat shock-resistant mutant of the budding yeast Saccharomyces cerevisiae was isolated at the mutation frequency of 10(-7) from a culture treated with ethyl methane sulfonate. Cells of the mutant are approximately 1,000-fold more resistant to lethal heat shock than those of the parental strain. Tetrad analysis indicates that phenotypes revealed by this mutant segregated together in the ratio 2+:2- from heterozygotes constructed with the wild-type strain of the opposite mating type, and are, therefore, attributed to a single nuclear mutation. The mutated gene in the mutant was herein designated hsr1 (heat shock response). The hsr1 allele is recessive to the HSR1+ allele of the wild-type strain. Exponentially growing cells of hsr1 mutant were found to constitutively synthesize six proteins that are not synthesized or are synthesized at reduced rates in HSR1+ cells unless appropriately induced. These proteins include one hsp/G0-protein (hsp48A), one hsp (hsp48B), and two G0-proteins (p73, p56). Heterozygous diploid (hsr1/HSR1+) cells do not synthesize the proteins constitutively induced in hsr1 cells, which suggests that the product of the HSR1 gene might negatively regulate the synthesis of these proteins. The hsr1 mutation also led to altered growth of the mutant cells. The mutation elongated the duration of G1 period in the cell cycle and affected both growth arrest by sulfur starvation and growth recovery from it. We discuss the problem of which protein(s) among those constitutively expressed in growing cells of the hsr1 mutant is responsible for heat shock resistance and alterations in the growth control.  相似文献   

20.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号