首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specificity of protein labeling by an affinity label of glucocorticoid receptors, dexamethasone 21-mesylate (Dex-Mes), was investigated using bovine serum albumin (BSA) as a model. During the early stages of [3H]Dex-Mes labeling at pH 8.8, approximately 90% of the covalent bond formation occurred at the one non-oxidized cysteine (Cys-34) of BSA. The nonspecific labeling was equally distributed over the rest of the BSA molecule. [3H]Dex-Mes labeling of Cys-34 was totally, and specifically inhibited by nearly stoichiometric amounts of the thiol-specific reagent methyl methanethiolsulfonate (MMTS). Thus both Dex-Mes and MMTS appear to react very selectively with thiols under our conditions. In reactions with hepatoma tissue culture (HTC) cell glucocorticoid receptors, MMTS was equally efficient in preventing [3H]dexamethasone binding to receptors and [3H]Dex-Mes labeling of the 98-kDa receptor protein. These results indicate that Dex-Mes labeling of the glucocorticoid receptor involves covalent reaction with at least one cysteine in the steroid binding site of the receptor. Small (approximately 1600-dalton) fragments of the [3H]Dex-Mes-labeled 98-kDa receptor were generated by limit proteolysis with trypsin, chymotrypsin, and Staphylococcus aureus V8 protease under denaturing conditions. Data from these fragments on 15% sodium dodecyl sulfate-polyacrylamide gels were consistent with all of the covalent [3H] Dex-Mes being located on one or a few cysteines in one approximately 15-residue stretch of the receptor. Further studies revealed no differences in the limit protease digestion patterns of activated and unactivated [3H]Dex-Mes-labeled receptors with trypsin, chymotrypsin, or V8 protease under denaturing conditions. These data suggest that activation does not cause any major covalent modifications of the amino acids immediately surrounding the affinity-labeled cysteine(s) of the steroid binding site.  相似文献   

2.
3.
Recent results using proteases suggest that dexamethasone 21-mesylate (Dex-Mes) labeling of the rat hepatoma tissue culture (HTC) cell glucocorticoid receptor occurs at one or a few closely grouped cysteine residues (Simons, S.S., Jr. (1987) J. Biol. Chem. 262, 9669-9675). In this study, a more direct approach was used both to establish that only one cysteine is labeled by [3H]Dex-Mes and to identify the amino acid sequence containing this labeled cysteine. Various analytical procedures did not provide the purification of the extremely hydrophobic Staphylococcus aureus V8 protease digestion fragment that is required for unique amino acid sequencing data. Therefore, Edman degradation was performed on the limit protease digest mixtures which appeared to contain only one 3H-labeled peptide. These degradation experiments revealed the number of amino acid residues between the NH2 terminus of each peptide and the [3H]Dex-Mes-labeled cysteine. A comparison of these amino acid spacings with the published amino acid sequence of the HTC cell glucocorticoid receptor (Miesfeld, R., Rusconi, S., Godowski, P. J., Maler, B. A., Okret, S., Wikstom, A-C., Gustafsson, J-A., and Yamamoto, K. R. (1986) Cell 46, 389-399) indicated that the one cysteine labeled by [3H]Dex-Mes is Cys-656. Further analysis of the receptor sequence for the presence of the observed grouping of proteolytic cleavage sites, but without any preconditions as to which amino acid was labeled, gave Asp-122 and Cys-656 as the only two possibilities. Potential labeling of Asp-122 could be eliminated on the basis of immunological and genetic evidence. We, therefore, conclude that the single Dex-Mes-labeled site of the HTC cell glucocorticoid receptor has been identified as Cys-656. Since several lines of evidence indicate that [3H]Dex-Mes labeling of the receptor occurs in the steroid binding site, Cys-656 is the first amino acid which can be directly associated with a particular property of the glucocorticoid receptor.  相似文献   

4.
5.
Cortisol 21-mesylate, an alkylating derivatives of cortisol, was previously shown to exert an anti-glucocorticoid action in rat hepatoma cell culture (Simons, Thompson and Johnson 1980). In this study the effect of cortisol 21-mesylate on milk protein synthesis induced in cultured mouse mammary gland by glucocorticoid, insulin, and prolactin was investigated. Addition of cortisol 21-mesylate at concentrations ranging from 10(-8) M to 10(-6) M produced no inhibition of casein synthesis that was induced by glucocorticoid, insulin and prolactin in mammary explants from midpregnant mice. On the other hand, cortisol 21-mesylate in combination with insulin and prolactin stimulated casein synthesis in cultured tissue. The potency of cortisol mesylate was about 1/10 to 1/30th of that of cortisol. Cortisol 21-mesylate, like cortisol, also augmented the accumulation of alpha-lactalbumin in midpregnant rat mammary tissue cultured in the presence of insulin and prolactin. A cell-free competition study of glucocorticoid receptors using cytoplasmic extracts from mouse mammary tissue showed that cortisol 21-mesylate competitively inhibited the binding of dexamethasone on glucocorticoid receptors. The apparent affinity of cortisol 21-mesylate for glucocorticoid receptors is about 1/10th of that of cortisol. These results indicate that cortisol 21-mesylate acts as a glucocorticoid but not as an antiglucocorticoid in the mammary gland.  相似文献   

6.
To investigate the possible use of electrophilic affinity labelling for the characterization of glucocorticoid receptors, different chemically reactive derivatives of deoxycorticosterone (deoxycorticosterone 21-mesylate and deoxycorticosterone 21-(1-imidazole) carboxylate), dexamethasone (dexamethasone 21-mesylate, dexamethasone 21-iodoacetate and dexamethasone 21-bromoacetate) and progesterone (21-chloro progesterone) were tested for their ability to bind irreversibly to the glucocorticoid receptor from goat lactating mammary gland. Using partially purified receptor, only one of the steroids tested, dexamethasone 21-mesylate (DXM-M) was found more effective than dexamethasone (DXM) in preventing exchange of radioactive dexamethasone in the receptor binding site. The affinity of DXM-M for the glucocorticoid receptor, measured by competitive binding assay, was 1/15 that of DXM. Polyacrylamide gel electrophoresis in sodium dodecyl sulphate of the [3H]-DXM-M labeled glucocorticoid receptor revealed a specific covalently radiolabeled fraction corresponding to an apparent molecular weight of 75,000 to 80,000. The biological activity of DXM-M was studied in RPMI 3460-clone 6 Syrian hamster melanoma cells, a cell line which is sensitive to growth inhibition by glucocorticoids. Like DXM, DXM-M inhibits the growth of RPMI 3460-clone 6 cells and it acts as a slowly reversible glucocorticoid agonist at concentrations which correlate with the affinity of DXM-M for the glucocorticoid receptor in vitro.  相似文献   

7.
Recent reports describe the ability of factors to modulate the position of the dose–response curve of receptor–agonist complexes, and the amount of partial agonist activity of receptor–antagonist complexes, of androgen, glucocorticoid (GRs), and progesterone receptors (PRs). We now ask whether this modulation extends to the two remaining steroid receptors: mineralocorticoid (MRs) and estrogen receptors (ERs). These studies of MR were facilitated by our discovery that the antiglucocorticoid dexamethasone 21-mesylate (Dex-Mes) is a new antimineralocorticoid with significant amounts of partial agonist activity. Elevated levels of MR, the co-activators TIF2 and SRC-1, and the co-repressor SMRT do modulate the dose–response curve and partial agonist activity of MR complexes. Interestingly, the precise responses are indistinguishable from those seen with GRs in the same cells. Thus, the unequal transactivation of common genes by MRs versus GRs probably cannot be explained by differential responses to changing cellular concentrations of homologous receptor, co-activators, or co-repressors. We also find that the dose–response curve of ER–estradiol complexes is left-shifted to lower steroid concentrations by higher amounts of exogenous ER. Therefore, the modulation of either the dose–response curve of agonists or the partial agonist activity of antisteroid, and in many cases the modulation of both properties, is a common phenomenon for all of the classical steroid receptors.  相似文献   

8.
Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. We have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with [3H]dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified approximately 100-kDa steroid-binding subunit was eluted from gel slices and subjected to enzymatic digestion. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single [3H]dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the [3H]dexamethasone 21-mesylate was located at position 5 from the amino terminus. Dual-isotope labeling studies with [3H]dexamethasone 21-mesylate and [35S]methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of [3H]dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, our data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Characterization of glucocorticoid receptor in HeLa-S3 cells   总被引:1,自引:0,他引:1  
H Hoschützky  O Pongs 《Biochemistry》1985,24(25):7348-7356
Glucocorticoid receptor of the human cell line HeLa-S3 has been characterized and has been compared to rat and to mouse glucocorticoid receptors. If HeLa cells were lysed in the absence of glucocorticoid, glucocorticoid receptor was isolated in a nonactivated form, which did not bind to DNA-cellulose. If HeLa cells were preincubated with glucocorticoid, glucocorticoid receptor was isolated in an activated, DNA-binding form. HeLa cell glucocorticoid receptor bound [3H]triamcinolone acetonide with a dissociation constant (KD = 1.3 nM at 0 degrees C) that was similar to those of mouse and rat glucocorticoid receptors. Similarly, the relative binding affinities for steroid hormones decreased in the order of triamcinolone acetonide greater than dexamethasone greater than promegestone greater than methyltrienolone greater than aldosterone greater than or equal to moxestrol. Nonactivated and activated receptors were characterized by high-resolution anion-exchange chromatography (FPLC), DNA-cellulose chromatography, and sucrose gradient centrifugation. Human, mouse, and rat nonactivated glucocorticoid receptors had very similar ionic and sedimentation properties. Activated glucocorticoid receptors were eluted at similar salt concentrations from DNA-cellulose columns but at different salt concentrations from the FPLC column. A monoclonal mouse anti-rat liver glucocorticoid receptor antibody [Westphal, H.M., Mugele, K., Beato, M., & Gehring, U. (1984) EMBO J. 3, 1493-1498] did not cross-react with HeLa cell glucocorticoid receptor. Glucocorticoid receptors of HeLa, HTC, and S49.1 cells were affinity labeled with [3H]dexamethasone and with [3H]dexamethasone 21-mesylate. The molecular weights of [3H]dexamethasone 21-mesylate labeled glucocorticoid receptors (MT 96 000 +/- 1000) were undistinguishable by polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90,000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37 degrees C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37 degrees C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei as well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

11.
Dexamethasone 21-mesylate, an irreversible antiglucocorticoid in HTC cells, forms a covalent receptor-steroid complex which can be activated in cell-free systems. The molecular basis of its antiglucocorticoid activity is unknown; it might result from altered DNA sequence preferences and/or affinities of the covalent receptor-steroid complex. To test this hypothesis, the affinities of both covalent receptor-antagonist and noncovalent receptor-agonist complexes for defined DNA sequences were measured in a DNA binding competition assay. This assay requires neither purified complexes nor large quantities of DNA, yet it provides quantitative comparisons of the affinities of different double-stranded DNAs for binding receptor-steroid complexes. In this assay, activated covalent receptor-dexamethasone 21-mesylate complexes in crude cytosol bound to calf thymus DNA and cloned subregions of the long terminal repeat (LTR) of murine mammary tumor virus (MMTV) proviral DNA with approximately the same relative affinities as did noncovalent receptor-dexamethasone complexes. Both types of complex exhibited similar orders of preferential binding to DNA sequences. LTR subregions, as well as the entire LTR, were 2-20 times more potent competitors than calf thymus DNA. Cloned sequences from the 3' terminus of the LTR were more effective competitors than either the entire LTR or comparably sized DNAs from the 5' terminus. The DNA sequences with the greatest affinities for both covalent and noncovalent complexes are located within the region of -221 to -67. These studies support the theory that recognition by regulatory elements of specific DNA sequences upstream of responsive genes is an integral step of hormone action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90 000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37°C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37°C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei aas well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

13.
The binding of ten steroids possessing antiglucocorticoid activity has been studied in rat skeletal muscle cytosol. The affinity of these steroids for both the androgen and the glucocorticoid receptors was determined by competition with radioactive R1881 (methyltrienolone, metribolone) and dexamethasone, respectively. The antiglucocorticoid activity of these compounds was assessed in rat hepatoma (HTC) cells by measuring their inhibitory effect on the glucocorticoid-induced tyrosine aminotransferase activity. This led to identification of five novel in vitro glucocorticoid antagonists. All the steroids tested bound to both the glucocorticoid and the androgen receptors in muscle. Four steroids had an affinity for the glucocorticoid receptor higher than for the androgen receptor. The assumption is made that the steroids tested also behave as antagonists when binding to the glucocorticoid receptor in muscle and behave as agonists when binding to the androgen receptor. On this basis, the data allow one to compute a potential anticatabolic (PAG) and a potential anabolic (PAA) index for each compound. These indices might be of predictive value to determine whether these steroids exert their anabolic action in muscle through the glucocorticoid receptor or through the androgen receptor. The data also make it unlikely that satellite cells are a preferential target for anabolic steroids in muscle.  相似文献   

14.
FU5-5 rat hepatoma (Reuber H35) cells are hypersensitive in that the same percentages of full induction of tyrosine aminotransferase (TAT) occur at much lower concentrations of glucocorticoids than in the related HTC rat hepatoma (Morris) cells. Unexpectedly, these hypersensitive FU5-5 cells also exhibited more agonist activity with the affinity labeling antiglucocorticoids cortisol 21-mesylate and dexamethasone 21-mesylate than did HTC cells (Mercier et al., Endocrinology 112, 601-609 [1983]). In the present study, several other antiglucocorticoids (11-desoxycortisone, progesterone, dexamethasone oxetanone, and RU 486 in addition to dexamethasone 21-mesylate) and the antiandrogen cyproterone acetate were examined to see if chemically unreactive, reversible antisteroids also would exhibit an altered activity (i.e. increased agonist activity) in FU5-5 cells. Each antiglucocorticoid examined did display a 2-fold increased amount of agonist activity in FU5-5 cells, as compared to HTC cells; only RU 486 was predominantly an antagonist in FU5-5 cells but the potency of RU 486 was about 9-fold less than in HTC cells. Dexamethasone, and especially progesterone, was metabolized in FU5-5 and HTC cells. However, differential metabolism in FU5-5 vs HTC cells cannot account for the increased induction of TAT in FU5-5 cells since the amount of agonist activity seen for dexamethasone mesylate (or its metabolites) depended not on the cell type used but rather on the glucocorticoid inducible enzyme monitored, i.e. TAT or glutamine synthetase. The combined data suggest that the hypersensitivity of FU5-5 cells towards glucocorticoid induction of TAT may be linked with the ability of both reversible and irreversible antiglucocorticoids to display increased TAT agonist activity in FU5-5 cells. This behavior was somewhat steroid specific since the antiandrogen cyproterone acetate did not display increased TAT agonist activity in FU5-5 cells compared to HTC cells and was only 2-fold less effective as an antiglucocorticoid in FU5-5.  相似文献   

15.
Glucocorticoid receptors in the IM-9 human lymphoblastoid cell line were affinity labeled with [3H]dexamethasone 21-mesylate and activated to a DNA-binding form by filtration through a Bio-Gel A-1.5m column. The 90 kDa heat shock protein, HSP90, was identified by labeling IM-9 cells with 35S-methionine at both 37 degrees C and 42 degrees C and purified to near homogeneity by sequential chromatography through DE52 and hydroxyapatite. Addition of purified HSP90 to activated, affinity labeled glucocorticoid receptors in a molecular ratio of 16 to 1 inhibited the binding of the receptors to DNA-cellulose. HSP90 did not affect the binding of other proteins to DNA-cellulose, indicating that the inhibitory effect of HSP90 was specific for the glucocorticoid receptor. These results suggest that HSP90 may associate with the glucocorticoid receptor, masking its DNA-binding site and thereby inhibiting receptor interaction with DNA.  相似文献   

16.
17.
A pulse-chase labeling technique was used to determine the properties of glucocorticoid receptors occupied by the antiglucocorticoid hormone RU486 in S49.1 mouse lymphoma cells. Cells were pulse-labeled with [35S]methionine and then at the beginning of the chase, either no hormone (control), dexamethasone, or RU486 was added to cells. At 4 h into the chase, cytosol was prepared and receptors were immunoadsorbed to protein A-Sepharose using the BuGR2 antireceptor antibody. Immunoadsorbed proteins were resolved by gel electrophoresis and analyzed by autoradiography. The 90 kDa heat shock protein (hsp90) coimmunoadsorbed with receptors from control cells when protein A-Sepharose pellets were washed with 250 mM NaCl but not when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that hsp90-receptor complexes are disrupted by a high concentration of salt in the absence of molybdate. hsp90 coimmunoadsorbed with receptors from RU486-treated cells even when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that RU486 stabilizes the association of hsp90 with the glucocorticoid receptor. In contrast, hsp90 did not coimmunoadsorb with receptors from dexamethasone-treated cells, consistent with earlier evidence that hsp90 dissociates from the receptor when the receptor binds glucocorticoid hormone. Dexamethasone induced a rapid quantum decrease in the amount of normal receptor recovered from cytosol but did not induce a decrease in the amount of nuclear transfer deficient receptor recovered from cytosol, consistent with tight nuclear binding of normal receptors occupied by dexamethasone. In contrast, RU486 did not induce a quantum decrease in the recovery of normal receptors from cytosol, indicating that receptors occupied by RU486 are not tightly bound in the nuclear fraction. We conclude that the antiglucocorticoid hormone RU486, in contrast to the glucocorticoid hormone dexamethasone, stabilizes the association between the glucocorticoid receptor and hsp90. The decreased affinity of receptors occupied by RU486 for the nuclear fraction may be due to their association with hsp90 and may account for the failure of RU486 to exert agonist activity.  相似文献   

18.
The enzyme tyrosine aminotransferase (TAT) is induced by unusually low concentrations of glucocorticoids in Fu5-5 cells. We have isolated clones of Fu5-5 cells infected with mouse mammary tumor virus (MMTV) in order to simultaneously compare the glucocorticoid regulation of the host cell gene, TAT, with that of another primary inducible gene, MMTV. In the two clones that were examined in detail, MMTV RNA induction occurred at 4- to 11-fold higher concentrations of dexamethasone than those needed for induction of TAT mRNA. Furthermore, the amount of agonist activity displayed by the irreversible antiglucocorticoid dexamethasone 21-mesylate was greater for the induction of TAT mRNA than for MMTV RNA. These results extend our previous observations of unequal sensitivity of induction of TAT enzyme activity in two hepatoma cell lines and show that differential glucocorticoid regulation of gene induction within the same cell can occur at a pretranslational step. The present data also indicate that the unusual properties of TAT gene induction are not shared by all primary, glucocorticoid-inducible responses of the same cell and imply that additional factors mediating differential regulation of glucocorticoid-responsive genes are involved.  相似文献   

19.
Binding studies with [3H]dexamethasone identified a class of binding sites on male rat liver microsomes. The binding sites were glucocorticoid-dependent and specific for glucocorticoids and progestins. Scatchard binding parameters, competition studies with triamcinolone acetonide, a synthetic glucocorticoid which competes well for the glucocorticoid receptor, and immunoblotting with an antiglucocorticoid receptor antibody indicated that these sites are distinct from the cytosolic glucocorticoid receptor. Affinity labelling experiments with [3H]dexamethasone 21-mesylate revealed two specifically labelled peptides, one at approx. 66 kDa and a doublet at 45 kDa. The 66 kDa peptide had been previously identified in serum and may be present as a result of serum contamination of the microsomal preparation. The 45 kDa doublet, on the other hand, had been shown to be absent from rat serum. The characteristics of the 45 kDa peptide(s) were identical to those of the dexamethasone binding site identified in the binding studies. [3H]Dexamethasone binding characteristics and affinity labelling of microsomal subfractions, separated by isopycnic centrifugation, showed that the binding sites are located in the endoplasmic reticulum. The identification and role of the 45 kDa peptide doublet remain to be determined.  相似文献   

20.
Two rapid and high yield purification methods for the rat liver glucocorticoid receptor based on differential DNA affinity (method A) and ligand affinity (method B) chromatography are described. In method A, the amount of receptor in rat liver cytosol that can be activated and subsequently eluted from a DNA-cellulose column has been increased to 80% by introducing a second heat activation step. Using this method, 1.5 nmol of 25% pure glucocorticoid receptor can be routinely obtained per day from 15-20 rat livers. Method B yields about 2.2 nmol of 60% pure receptor with an overall yield of congruent to 60%. The quality of these purifications has been controlled by affinity labeling. In each case, more than 95% of purified binding activity represented the intact 92,000 +/- 400-Da glucocorticoid receptor polypeptide as shown by sodium dodecyl sulfate-gel electrophoresis and fluorography. No difference in the labeling pattern was observed using either [3H]triamcinolone acetonide (photoaffinity labeling) or [3H]dexamethasone 21-mesylate (electrophilic labeling). The electrophilic labeling step was performed in the cytosol prior to purification by method A to compare the labeled components thus purified with those obtained when the photoaffinity labeling was performed after the purification. Using this approach, distinct breakdown products of the glucocorticoid receptor were revealed, co-purifying during DNA affinity chromatography. Cross-linked receptor obtained by method A has been further purified to homogeneity by preparative sodium dodecyl sulfate-gel electrophoresis and successfully used as immunogen to raise glucocorticoid receptor antibodies in rabbits. These antibodies raised against glucocorticoid receptor, as well as those previously obtained using affinity chromatography-purified receptor, react with the receptor molecules irrespective of their method of purification. Glucocorticoid receptors purified by methods A and B have been analyzed for specific DNA-binding properties by the nitrocellulose filter binding assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号