共查询到20条相似文献,搜索用时 0 毫秒
1.
Oami K 《Zoological science》2004,21(2):131-138
Membrane potential responses and tentacle movement of the marine dinoflagellate Noctiluca miliaris were recorded simultaneously and their time relationships were examined. The food-gathering tentacle of Noctiluca exhibited slow extension-flexion movements in association with the spontaneously recurring membrane potential responses termed the tentacle regulating potentials (TRPs). The flexion of the tentacle began during the slow depolarization of the TRPs. The rate of the flexion increased after the hyperpolarizing (negative) spike following the slow depolarization. The tentacle then extended slowly during the hyperpolarized level of the TRPs. A TRPs-associated flexion did not occur when the external Ca(2+) ions were removed. On the contrary, the tentacle showed conspicuous flexion (coiling) when the external Ca(2+) concentration was raised. In association with the stimulus-evoked action potential, which triggers bioluminescent flash (flash-triggering action potential; FTP), the tentacle coiled quickly. The FTP-associated coiling took place even in the Ca(2+)-deprived condition. The coupling mechanisms of the TRPs-associated and FTP-associated tentacle movements were compared, and their biological significance was discussed. 相似文献
2.
3.
Application and availability of real-time polymerase chain reaction (PCR) assay to detect and quantify the Noctiluca scintillans zoospore were investigated seasonally. Specific primer set for N. scintillans 18S rDNA was designed and applied to real-time PCR assay using the serial dilutions of N. scintillans zoospores. The real-time PCR assays with Ns63F and Ns260R primers were applied to sea water samples collected weekly in Manazuru
Port of Sagami Bay, Japan from April 2005 to June 2006. We developed effective DNA preparation steps for collecting the template
DNA of N. scintillans zoospore: size fraction and filter concentration of the water samples, fixation with Lugol solution, cell lysis, and purification.
This method is useful for the monitoring of the zoospores of N. scintillans, and can also be used for other small and physiologically fragile planktonic cell. Variation in the density of zoospore was
successfully detected in the field samples. The peak density of N. scintillans zoospore was observed to occur just before or at the same time as the peak of the vegetative cells. Moreover, zoospores were
detected in seawater even when the vegetative cells were not observed. The presence of zoospore was found all year round in
the present study. In this regards, this information is essential for the study of the life cycle and seasonal variation of
N. scintillans in the coastal waters. 相似文献
4.
Summary The organization of the cytoskeleton of vegetative filaments ofVaucheria longicaulis Hoppaugh var.macounii Blum is investigated by fluorescence microscopy using monoclonal anti -tubulin antibodies and fluorescein (FITC)-labelled phalloidin. Confocal laser scanning microscopy observations give further information on the distribution of the cytoskeletal elements. Phalloidin labelling reveals F-actin bundles in the cortical cytoplasm of both fixed and unfixed vegetative filaments of this alga. In addition a more diffuse fluorescent component, seen at higher magnification to be made up of thinner F-actin bundles, can also be detected in unfixed cells. The distribution of the F-actin bundles resemble that of filamentous structures observed with differential interference contrast (DIC) microscopy in living cells. These structures seem to correspond to the microtubule associated reticulum (MAR) described in literature and overall the evidence suggests that actin and MAR elements are co-distributed. F-actin bundles are always found in association with focal masses (foci) of phalloidin-positive material. Foci are also observed by DIC microscopy associated with the cytoplasmic filamentous structures in living cells.Depolymerization of F-actin with cytochalasin D and the subsequent repolymerization that occurs on transfer ofVaucheria vegetative filaments to cytochalasin-free medium suggest that these foci are involved in the organization of the F-actin array. Immunofluorescence for -tubulin reveals microtubule bundles that are shorter in length and straighter in configuration than microfilament bundles. Microtubule bundles are associated with spot-like focal structures that, in many instances, show a close relationship with respect to nuclei. Oryzalin and cold temperature cause the depolymerization of the microtubule bundles and suggest, in conjunction with repolymerization studies, that these fluorescent spots associated with the ends of the microtubule bundles are involved in their organization; hence, they represent microtubule organizing centres or MTOCs. The importance of both microfilament and microtubule bundle focal regions is discussed with respect to the apical growth exhibited by the vegetative filaments of this alga. 相似文献
5.
Summary Extracellular electrical stimulation ofTrichophrya collini induces tentacle contraction. There is an inverse relationship between stimulus duration and voltage in producing a threshold response, and at a set voltage the response is graded depending upon duration of stimulus. With a threshold stimulus (6.3 V, 1,000 ms) the response is restricted to the anodal tentacles, and with increasing stimulus intensity or duration the response spreads to the cathodal and finally the intermediate tentacles. With a stimulus of 15 V, 1,000 ms the mean tentacle length is reduced to 28% of the control within 1.2 s. Recordings using intracellular microelectrodes give resting membrane potentials between –10mV and –40mV. Intracellular hyperpolarizing currents of 1nA and 2nA induce tentacle contraction to 50% and 25% of the control length respectively, but depolarizing currents do not induce contraction. SEM studies show that in the initial stages of contraction, only the central region of the tentacle shaft becomes shortened, but on full contraction shortening involves the whole of the shaft. TEM studies show that on contraction no depolymerization of tentacle axoneme microtubules occurs, but that the entire axoneme passes down into the body cytoplasm. These observations are discussed in relation to the possible mechanisms of tentacle contraction.Abbreviations Ax
axoneme
- C
cortex
- EDB
elongate dense body
- SEM
scanning electron microscopy
- TEM
transmission electron microscopy 相似文献
6.
The three-dimensional organization of the microfilamental cytoskeleton of developingGasteria pollen was investigated by light microscopy using whole cells and fluorescently labelled phalloidin. Cells were not fixed chemically but their walls were permeabilized with dimethylsulphoxide and Nonidet P-40 at premicrospore stages or with dimethylsulphoxide, Nonidet P-40 and 4-methylmorpholinoxide-monohydrate at free-microspore and pollen stages to dissolve the intine.Four strikingly different microfilamentous configurations were distinguished. (i) Actin filaments were observed in the central cytoplasm throughout the successive stages of pollen development. The network was commonly composed of thin bundles ramifying throughout the cytoplasm at interphase stages but as thick bundles encaging the nucleus prior to the first and second meiotic division. (ii) In released microspores and pollen, F-actin filaments formed remarkably parallel arrays in the peripheral cytoplasm. (iii) In the first and second meiotic spindles there was an apparent localization of massive arrays of phalloidin-reactive material. Fluorescently labelled F-actin was present in kinetochore fibers and pole-to-pole fibers during metaphase and anaphase. (iv) At telophase, microfilaments radiated from the nuclear envelopes and after karyokinesis in the second meiotic division, F-actin was observed in phragmoplasts.We did not observe rhodamine-phalloidin-labelled filaments in the cytoplasm after cytochalasin-B treatment whereas F-actin persisted in the spindle. Incubation at 4° C did not influence the existence of cytoplasmic microfilaments whereas spindle filaments disappeared. This points to a close interdependence of spindle microfilaments and spindle tubules.Based on present data and earlier observations on the configuration of microtubules during pollen development in the same species (Van Lammeren et al., 1985, Planta165, 1-11) there appear to be apparent codistributions of F-actin and microtubules during various stages of male meiosis inGasteria verrucosa.Abbreviation DMSO
dimethylsulfoxide 相似文献
7.
Summary Motile unicells ofApedinella radians have the extraordinary ability to instantaneously reorient six elongate spine-scales located on the cell surface. Extracellular striated fibrous connectors (termed microligaments) attach spine-scales to discrete regions of the plasma membrane underlain by intricate cytoplasmic plaques. A complex cytoskeleton is associated with the plaques and appears responsible for spine-scale movement. Three cytoskeletal proteins have thus far been identified by immunofluorescence using anti-tubulin, anti-actin, and anti-centrin. The three-dimensional configuration of the cytoskeleton has been established and consists of filamentous bundles of actin and centrin which form stellate systems interconnecting the plaques. Additionally, there is a network of microtubular triads which originate on the surface of the nuclear envelope and subtend the plasma membrane and also support several tentacular protrusions. It is proposed that contraction of the actin and/or centrin filamentous bundles is responsible for the reorientation of the spine-scales. 相似文献
8.
Summary The euglenoids and kinetoplastids form a diverse assemblage of organisms which show no obvious phylogenetic relationship with other flagellates. An ultrastructural examination and comparison of the flagellar apparatus, the feeding apparatus, and mitotic nucleus indicate a number of shared morphological features which support a common ancestry for the two groups. Of particular interest is the euglenoid,Petalomonas cantuscygni, which shares many of the ultrastructural features common to both groups. Based on the data presented, we hypothesize that a euglenoid with features similar to those now present inP. cantuscygni was ancestral to both the euglenoid and kinetoplastid lines.Abbrevation MTR
complex of reinforcing microtubules 相似文献
9.
Summary The structure and organization of the cytoskeleton in the vegetative cell of germinated pollen grains and pollen tubes ofPyrus communis was examined at the ultrastructural level via chemical fixation and freeze substitution, and at the light microscopic level with the aid of immunofluorescence of tubulin and rhodamine-phalloidin.Results indicate that cortical microtubules and microfilaments, together with the plasma membrane, form a structurally integrated cytoskeletal complex. Axially aligned microtubules are present in cortical and cytoplasmic regions of the pollen grain portion of the cell and the distal region of the pollen tube portion. Cytoplasmic bundles of microfilaments are found in association with elements of endoplasmic reticulum and vacuoles. Axially aligned microfilaments are also found in this region, associated with and independent of the microtubules. Microtubules are lacking in the subapical region where short, axially aligned microfilaments are found in the cell cortex. In the apical region, which also lacks microtubules, a 3-dimensional network of short microfilaments occurs. Microfilaments, but not microtubules, appear to be associated with the vegetative nucleus. 相似文献
10.
The noctilucid dinoflagellate Noctiluca scintillans is an unarmed heterotrophic protist that inhabits the world's oceans and is sometimes responsible for harmful red tides. The phylogenetic position of the noctilucids has been widely disputed because of two alternative views based on morphological characters and phylogenetic analyses using SSU rDNA. Specifically, noctilucids are either placed in a basal position within the dinoflagellates or they are seen as evolutionarily recent derivations descended from unarmored dinoflagellates in the order Gymnodiniales. Thus, the precise relationship of noctilucids to other dinoflagellates is still uncertain. In this study, we isolated β-tubulin and heat shock protein 90 genes from N. scintillans to examine this relationship further. The deduced amino acid sequences share commonly substituted amino acids and a deletion with other dinoflagellates, but not with Perkinsus marinus or other alveolates. Although Hsp90 analysis did not give robust support, β-tubulin analysis including an AU test, as well as combined analysis of these two amino acid sequences showed that N. scintillans is the next earliest branch after Oxyrrhis marina, within the dinoflagellates. Given the phylogenetic position of N. scintillans, its extremely specialized diploid trophont, and the primitive dinoflagellate-like characteristics of its haploid zoospore, we propose that noctilucids are a possible evolutionary link between ancestral diploid dinoflagellates and haploid core dinoflagellates. This implies that the transition from diploidy to haploidy in trophonts probably occurred via neoteny of a noctilucid-like zoospore. 相似文献
11.
The microtubular and actin cytoskeletons have been investigated during megagametogenesis in Arabidopsis thaliana using immunofluorescence labelling of isolated coenocytic and mature embryo sacs. We found both actin and microtubules (MTs) to occur in abundance throughout megagametogenesis and in all constituent cells of the mature embryo sac. During many stages, the patterns of distribution of these cytoskeletal elements are congruent and may prove to be co-aligned. Many changes in the arrays of MTs and microfilaments take place and indicate varying roles of the cytoskeleton in the different stages and cell types of megagametogenesis. Two major populations of MTs recur throughout embryo sac formation: (1) Elaborate nuclear-based networks are found during the two-nucleate and four-nucleate developmental stages as well as in the egg cell. These arrays may function in positioning the nuclei. (2) Cytoplasmic MTs in longitudinal orientation in the two-nucleate embryo sac, synergids and part of the egg cell, or in a reticulate pattern in the four-nucleate embryo sac, egg and central cell probably participate in organization of the cytoplasm. Synergid MTs converge at the filiform apparatus. Preprophase bands of MTs are absent throughout megagametogenesis but phragmoplast arrays occur during cellularization of the embryo sac. Well developed arrays of cortical MTs are restricted to the antipodal cells. A large concentration of MTs in the part of the egg cell adjacent to the synergids is well placed for being involved with sperm cell movement within the degenerative synergid. On the basis of the morphology of the cytoskeleton, we concur with views that the shape of megagametophyte is largely determined by the surrounding tissues, including the integumentary tapetum. 相似文献
12.
J. Heslop-Harrison Y. Heslop-Harrison 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1997,352(1364):1985
The uniaperturate pollen of wheat is dispersed in a partially hydrated condition. Amyloplasts are concentrated in the apertural hemisphere where they surround the two sperms, while vigorously moving polysaccharide-containing wall precursor bodies (P-particles) together with the vegetative nucleus occupy the other. This disposition is the product of a post-meiotic developmental sequence apparently peculiar to the grasses. During vacuolation of the spore after release from the tetrad, the nucleus is displaced to the pole of the cell opposite the site of the germination aperture, already defined in the tetrad. Following pollen mitosis, the vegetative nucleus migrates along the wall of the vegetative cell towards the aperture, leaving the generative cell at the opposite pole isolated by a callose wall. As the vacuole is resorbed, the generative cell rounds up, loses its wall and follows the vegetative nucleus, passing along the wall of the vegetative cell towards the aperture where it eventually divides to produce the two sperms. Throughout this period of nucleus and cell manoeuvrings, minor inclusions of the vegetative cell cytoplasm, including mitochondria, lipid globuli and developing amyloplasts, move randomly. Coordinated vectorial movement begins after the main period of starch accumulation, when the amyloplasts migrate individually into the apertural hemisphere of the grain, a final redistribution betokening the attainment of germinability. In the present paper we correlate aspects of the evolution of the actin cytoskeleton with these events in the developing grain, and relate the observations to published evidence from another monocotyledonous species concerning the timing of the expression of actin genes during male gametophyte development, as revealed in the synthesis of actin mRNA. 相似文献
13.
Summary Paired leaflets ofAlbizzia julibrissin spread apart (open) in the daytime and fold together (close) at night. We examined the structure of cells in open and closedAlbizzia motor organs (pulvini) to identify reversible changes in structure associated with motility. Pulvini were fixed in glutaraldehyde and stained using conventional methods. The pulvinus has a central vascular cylinder bordered by thick-walled collenchyma cells, in turn surrounded by an endodermis and many layers of cortical parenchyma. Cortical cells in the extensor undergo large changes in shape during leaflet closure linked with: formation of wall infoldings, development of a large periplasmic space filled with fibrils and membranes, development of lobes on the nucleus, evagination of the nuclear outer envelope membrane, break-up of the large central vacuole to form many small vacuoles, and linking of the plasmalemma to inner regions of the cytoplasm by microfilaments. Cortical cells in the flexor, by contrast, remain relatively stable during leaflet movement. Microtubules are present near the plasmalemma in both extensor and flexor cells; in the extensor, spherical coated vesicles are located near the microtubules. The possible function of these structures in regulating intracellular shuttling processes is discussed. 相似文献
14.
Summary The cytoarchitectural elements ofDictyostelium discoideum amoeba have been visualized by light and electron microscopy in cells prepared with mixtures of glutaraldehyde and Triton-X-100. After negative staining, the peripheral regions of spreading amoebae show a complex meshwork of actin filaments, the majority of which were less than 0.25 microns in length. Multiple branch points, end to side abutments and cross-overs were characteristic features of the actin meshworks. Filopodia extending from the cell periphery consisted of bundles of actin filaments that penetrated into and merged with the actin meshworks in the spreading lamellae. Microtubules emanating from the nucleus associated body penetrated to differing extents into the actin meshworks, sometimes extending close to the cell periphery.Dictyostelium cytoskeletons preparted as described here should prove useful for further studies on the locomotory mechanism. 相似文献
15.
Inge Kunzenbacher Jürgen Bereiter-Hahn Mary Osborn Klaus Weber 《Cell and tissue research》1982,222(2):445-457
Summary The cytoskeleton of primary tissue-culture cells from the epidermis of Xenopus laevis tadpoles was investigated by phase-contrast, immunofluorescence, and electron microscopy. The connection between the arrangement of different types of filaments and the mechanical properties of the epidermis is discussed. The bilayered epidermis attains stability from thick bundles of tonofilaments interconnecting the basal desmosomes. Twisting of tonofilaments around each other can explain the occurrence of elastic filamentous curls forming a meshwork braced between rows of small desmosomes in the apical region of the epidermis. Actin is arranged as a diffuse meshwork and sometimes forms bundles intermingling with tonofilament bundles. Surface membranes and rows of small desmosomes are delineated by actin and contain -actinin. Actin raises the tension for rounding and spreading of cells. Microtubules stabilize already well-developed lamellae. 相似文献
16.
Developmental gradients play a central role in axial patterning in hydra. As part of the effort towards elucidating the molecular basis of these gradients as well as investigating the evolution of the mechanisms underlying axial patterning, genes encoding signaling molecules are under investigation. We report the isolation and characterization of HyBMP5-8b, a BMP5-8 orthologue, from hydra. Processes governing axial patterning are continuously active in adult hydra. Expression patterns of HyBMP5-8b in normal animals and during bud formation, hydra's asexual form of reproduction, were examined. These patterns, coupled with changes in patterns of expression in manipulated tissues during head regeneration, foot regeneration as well as under conditions that alter the positional value gradient indicate that the gene is active in two different processes. The gene plays a role in tentacle formation and in patterning the lower end of the body axis. 相似文献
17.
Summary
Discophrya collini is a suctorian protozoan with contractile tentacles containing a microtubule-lined canal and microfilaments. The effects of a range of cations on tentacle contraction and ultrastructure have been determined. Treatment with 80 mM CaCl2 and 95 mM MgCl2 causes contraction to 28% and 57% of the control length respectively. Re-extension takes over 4 hours in the culture medium, but CaCl2-treated tentacles are re-extended after a 5 minutes treatment with 10–2 M EDTA or 5 × 10–3 M EGTA. CuCl2 causes a significant contraction at 10–5 M (to 77%); LaCl3 at 10–4 M (to 65%); ZnCl2 at 10–2 M (to 65%), but BaCl2, CoCl2, MnCl2, NiCl2, and SrCl2 cause significant changes only at 10–1 M.The cytoplasm of CaCl2-treated cells contains two forms of membraneous structures when viewed in TEM; that of MgCl2-treated cells reveals granular areas of medium electron density. None of these features are seen in control cells. The microtubules of the tentacle canal appear to be intact upon its retraction into the cell with no change occurring in the numbers or relative positions of the microtubules. The tentacle cortex is wrinkled. It is suggested from this and previous work that tentacle contraction may be mediated by a microfilament-based mechanism, and that calcium may be involved. 相似文献
18.
A. A. M. Van Lammeren 《Protoplasma》1988,146(1):18-27
Summary The three-dimensional structure of the microtubular cytoskeleton of developing wheat endosperm was investigated immunocytochemically. Semi-thin sections were prepared from polyethylene glycol embedded ovaries. At the free-nuclear stage the endosperm cytoplasm with regularly distributed nuclei surrounded a large central vacuole and exhibited an extensive network of fluorescent labelled microtubular assemblies radiating from each nucleus. As was found in other coenocytes, this particular and nuclear-dependent cytoskeletal configuration functions in the arrangement of nuclei and in the stabilization of the nuclear positions. At the beginning of cellularization of the endosperm the formation of vacuoles altered the radiating networks. It is likely that the radiating microtubular arrays function in the formation of phragmoplasts, independent of nuclear divisions. The formation of anticlinal cell walls, giving rise to openended cell cylinders, coincides with the occurrence of phragmoplast microtubular arrays which were demonstrated during the period of cell wall elongation. The microtubular system radiating from the nuclei in these cell cylinders anchored the nuclei in stage- and locus-specific positions. During the development of aleurone and inner endosperm cells, cell morphogenesis was related to earlier demonstrated types of microtubular configurations in the cortical cytoplasm. This suggests that a general mechanism is involved.Abbreviations A
alveolus
- AL
aleurone layer
- CE
central endosperm
- CV
central vacuole
- DAP
days after pollination
- END
endosperm
- FITC
fluorescein isothiocyanate
- GAR-FITC
goat anti-rabbit antibodies conjugated with FITC
- I
integument
- IE PC
inner epidermis pericarp
- II
inner integument
- N
nucleus
- NC
nucellus cells
- NE
nucellar epidermis
- NUC
nucellus
- OI
outer integument
- PBS
phosphate buffered saline
- PC
pericarp
- PEG
polyethylene glycol
- V
vacuole 相似文献
19.
Summary The cytoplasm of eukaryotic cells is a complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained
is a central theme in modern cell biology. The actin cytoskeleton is essential for the maintenance of cell shape and locomotion,
and also provides tracks for active intracellular transport. Myosins, the actin-dependent motor proteins form a superfamily
of at least 15 structural classes and have been identified in a wide variety of organisms, making the presence of actin and
myosins a hallmark feature of eukaryotes. Direct connections of myosins to a variety of cellular tasks are now emerging, such
as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport. Recent studies reveal
that myosins also play an essential role in many aspects of signal transduction and neurosensation. 相似文献
20.
Summary Using immunocytochemical techniques, tubulin distribution in various stages of meiosis and embryo sac development was studied. In the archespore cell some microtubules appeared to be randomly oriented. During zygotene and pachytene, when the cell volume increases, a large number of microtubules in dispersed configurations and bundles were observed. During this stage the nucellar cells divide, and their parallel cortical microtubules play an important role in preparing the direction of cell enlargement. The protoderm cells show anticlinal-directed cortical microtubules. It can be concluded that the enlargement of the meiocyte during these early meiotic stages is influenced both by its own cytoskeleton and by growth of the nucellus. Thereafter, the microtubules function directly in meiosis and disappear for the greater part until the two-nucleate coenocyte is formed. In a four-nucleate coenocyte microtubules reappear around the nucleus; in a young synergid, randomly oriented microtubules are involved in cell shaping during the formation of the filiform apparatus; in the synergids of the mature embryo sac, many parallel arrays of microtubules are present. Microtubules are less abundant in other cells. It is concluded that the cytomorphogenesis of the developing coenocyte and embryo sac are due to cell growth of the nucellar cells together with vacuolation of the coenocyte. 相似文献