首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The search for proteins with immunochemical affinity to plant stress proteins in endemic Baikal fishes shows the presence of proteins, immunochemically related to plant heat-stabile proteins and plant uncoupling protein CSP 310. Western blotting showed that among the native cytoplasmic proteins of endemic Baikal fishes there are proteins immunochemically related to heat-stabile plant proteins with molecular weights about 480, 200-290, 150, 140 and about 90-100kD. SDS-electrophoresis showed the presence of polypeptides with molecular weights 23, 17 and 14kD in all species investigated and an additional 35kD polypeptide in Cottocomephorus grewingki. The search for polypeptides with immunochemical affinity to plant stress uncoupling protein CSP 310 in endemic Baikal fishes shows the presence of a 14kD polypeptide, immunochemically related to it.  相似文献   

2.
Certain concentrations of the cold-shock protein (CSP310) were shown to induce systems of lipid peroxidation (POL) in winter wheat (Triticum aestivum L.) mitochondria in vitro. The process of nonenzymatic POL turned out to be the most sensitive to the presence of CSP310 in the incubation medium. The maximum induction of the enzymatic POL occurred at a higher CSP310 concentration. Wheat, maize (Zea mays L.), and elymus (Elymus sibiricus L.) proteins, which are immunochemically related to CSP310, did not manifest prooxidant properties, and, moreover, the elymus proteins had a clear-cut antioxidant effect. At the same time, these proteins uncoupled oxidation and phosphorylation to a far lesser extent than the winter rye (Secale cereale L.) CSP310. During low-temperature stress, the activation of uncoupling systems of wheat mitochondria by pyruvate, linoleic acid, and CSP310 was accompanied by an increase in oxygen consumption by seedlings and a decrease in the POL level.  相似文献   

3.
We studied the localization of polypeptides immunochemically related to subunits of cold-shock 310-kD protein from winter rye (Secale cerealeL.) in mitochondria and submitochondrial structures of winter wheat (Triticum aestivumL.) seedlings. Polypeptides were separated by SDS-PAGE and probed with the antibody against 310-kD protein from rye seedlings. Wheat mitochondria contained the following polypeptides cross-reacting with this antibody: 66, 60, 55, and 23 kD in the inner membrane; 60 and 58 kD in the outer membrane; and 66 and 55 kD in the matrix.  相似文献   

4.
It was shown that, in preparations of winter rye (Secale cereale L.) and winter wheat (Triticum aestivum L.), in proteins immunochemically related to a cold shock protein CSP310, and also in purified CSP310 from winter rye and triticale (Triticosecale X.), nucleic acid was present. Treatments with DNase and RNase showed that this nucleic acid was RNA. This protein-bound RNA was detected in the preparation of constitutively synthesized but not stress-induced protein. Stress-induced CSP310 bound high-molecular RNA in vitro at both 26 and 0°C, but it did not bind DNA. The data obtained permit an assumption that, during low-temperature stress, constitutively synthesized CSP310 with a low uncoupling capacity releases RNA and transits to a stress-induced form with a high uncoupling capacity.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 216–220.Original Russian Text Copyright © 2005 by Kolesnichenko, Tauson, Zykova, Klimenko, Grabelnykh, Pobezhimova.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

5.
A difference between the uncoupling action of constituently synthesised and stress-induced forms of winter rye stress uncoupling protein CSP 310 on winter wheat mitochondria in vitro was found from the initiation of incubation. The uncoupling activity of CSP 310 depended on its concentration in the incubation media. The addition of anti-CSP 310 antiserum to isolated mitochondria from stressed winter rye shoots caused coupling of oxidation and phosphorylation. Western-blot analysis did not locate dehydrins K-segment in CSP 310 subunits.  相似文献   

6.
Antifreeze proteins in winter rye leaves form oligomeric complexes   总被引:5,自引:3,他引:2       下载免费PDF全文
Yu XM  Griffith M 《Plant physiology》1999,119(4):1361-1370
Antifreeze proteins (AFPs) similar to three pathogenesis-related proteins, a glucanase-like protein (GLP), a chitinase-like protein (CLP), and a thaumatin-like protein (TLP), accumulate during cold acclimation in winter rye (Secale cereale) leaves, where they are thought to modify the growth of intercellular ice during freezing. The objective of this study was to characterize the rye AFPs in their native forms, and our results show that these proteins form oligomeric complexes in vivo. Nine proteins were separated by native-polyacrylamide gel electrophoresis from apoplastic extracts of cold-acclimated winter rye leaves. Seven of these proteins exhibited multiple polypeptides when denatured and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After isolation of the individual proteins, six were shown by immunoblotting to contain various combinations of GLP, CLP, and TLP in addition to other unidentified proteins. Antisera produced against individual cold-induced winter rye GLP, CLP, and TLP all dramatically inhibited glucanase activity in apoplastic extracts from cold-acclimated winter rye leaves, and each antiserum precipitated all three proteins. These results indicate that each of the polypeptides may be exposed on the surface of the protein complexes. By forming oligomeric complexes, AFPs may form larger surfaces to interact with ice, or they may simply increase the mass of the protein bound to ice. In either case, the complexes of AFPs may inhibit ice growth and recrystallization more effectively than the individual polypeptides.  相似文献   

7.
Using three-day-old winter-wheat (Triticum aestivum L.) and six-day-old pea (Pisum sativum L.) seedlings as examples, we studied the effects of inhibitors of the electron transfer chain of plant mitochondria on the uncoupling between oxidation and phosphorylation brought about by the CSP310 stress protein. This uncoupling was inhibited by cyanide and by antibodies against CSP310, but not inhibited by antimycin A. It was shown that, in plant mitochondria, the CSP310 stress protein is involved in the electron transfer via shunting the major cytochrome pathway. In this case, the electron transfer bypasses complex II, ubiquinone, and complex III of the mitochondrial respiratory chain and is realized in the following succession: complex I-CSP310-cytochrome c-complex IV. This electron-transfer pathway was found in winter grass mitochondria during the low-temperature stress and resulted in thermogenesis. It was concluded that CSP310 is a thermogenic system, which is activated in winter grass mitochondria during the low-temperature stress.  相似文献   

8.
The addition of plant stress uncoupling protein CSP 310 has been found to increase thermogenesis in isolated winter wheat mitochondriain vitro during cold stress. On the other hand, the addition of anti-CSP 310 antiserum has been found to decrease thermogenesis in isolated winter wheat mitochondria. This result corresponds well to data about the influence of mitochondria incubation with CSP 310 and anti-CSP 310 antiserum on their energetic activity. It is supposed that CSP 310 uncouples the oxidative phosphorylation in mitochondria that causes thermogenesis during cold stress.  相似文献   

9.
Addition of the cold-stress-related protein CSP 310 to mitochondria isolated from winter wheat ( Triticum aestivum L. cv. Zalarinka), winter rye ( Secale cereale L. cv. Dymka), maize ( Zea mays L. cv. VIR 36) and pea ( Pisum sativum L. cv. Marat) caused an increase in non-phosphorylative respiration. This increase was inhibited by KCN, indicating that the protein is not a CN-resistant alternative oxidase. Unlike plant mitochondrial uncoupling proteins such as PUMP, the uncoupling action of CSP 310 did not depend on the presence of free fatty acids in the incubation medium. We propose that the mechanism of the uncoupling action of CSP 310 differs from that of other known plant uncoupling systems and that the CSP 310 uncoupling system is a third uncoupling system in cereals.  相似文献   

10.
We studied the effects of cold-shock 310-kD protein (CSP310) isolated from winter rye seedlings on the energetic activity of plant mitochondria. CSP310 was shown to enhance nonphosphorylating respiration and uncoupled oxidative phosphorylation in isolated mitochondria. The uncoupling effect was enhanced with increasing protein concentration. An antibody against CSP310 interfered with the uncoupling effect of CSP310. Free fatty acids were not evidently involved in uncoupling. The physiological role of uncoupling between oxidation and phosphorylation during plant adaptation to low temperatures is discussed.  相似文献   

11.
The effects of different Ca2+ concentrations on winter wheat (Triticum aestivum L.) functioning and cytochrome c release after organelle incubation with cold-shock protein with a mol. wt of 310 kD or after cold shock were studied. Low (1–5 μM) and high (25–50 μM) Ca2+ concentrations inhibited mitochondrial respiration in control seedlings, whereas 10 μM Ca2+ enhanced respiration in state 4 and reduced indices characterizing coupling (respiratory control (RC) and ADP: O ratio). At concentrations of 6–20 and 50 μM, Ca2+ ions suppressed CSP310 uncoupling effect, which reduced the rate of respiration and an increase in the RC and ADP: O ratio. Low-temperature stress and exogenous CSP310 induced cytochrome c leakage from winter wheat mitochondria both in the absence of Ca2+ and in the presence of its low concentrations.  相似文献   

12.

Background

Dehydrins are known as Group II late embryogenesis abundant proteins. Their high hydrophilicity and thermostability suggest that they may be structure stabilizers with detergent and chaperone-like properties. They are localised in the nucleus, cytoplasm, and plasma membrane. We have recently found putative dehydrins in the mitochondria of some cereals in response to cold. It is not known whether dehydrin-like proteins accumulate in plant mitochondria in response to stimuli other than cold stress.

Results

We have found five putative dehydrins in the mitochondria of winter wheat, rye and maize seedlings. Two of these polypeptides had the same molecular masses in all three species (63 and 52 kD) and were thermostable. Drought, freezing, cold, and exogenous ABA treatment led to higher accumulation of dehydrin-like protein (dlp) 63 kD in the rye and wheat mitochondria. Protein 52 kD was induced by cold adaptation and ABA. Some accumulation of these proteins in the maize mitochondria was found after cold exposition only. The other three proteins appeared to be heat-sensitive and were either slightly induced or not induced at all by all treatments used.

Conclusions

We have found that, not only cold, but also drought, freezing and exogenous ABA treatment result in accumulation of the thermostable dehydrins in plant mitochondria. Most cryotolerant species such as wheat and rye accumulate more heat-stable dehydrins than cryosensitive species such as maize. It has been supposed that their function is to stabilize proteins in the membrane or in the matrix. Heat-sensitive putative dehydrins probably are not involved in the stress reaction and adaptation of plants.  相似文献   

13.
The effect of hypothermia on the content of 310 kD stress protein in seedlings of winter rye and wheat was studied by rocket-immunoelectrophoresis and radioactive label. The 1-h low-temperature stress was found to result in an increase in the content of this protein at both above- and below-zero temperatures. It was found that the increase in the relative content of the protein with mol. wt 310 kD, under the effect of short-term low-temperature stress, occurs due to induction of its synthesis. It has been found that during cold hardening of winter wheat the content of this protein decreases up to 64% compared to the control during the first day of hardening but starts to rise by the third day and reaches 179% by the seventh day, which is well correlated with the increase in cold resistance of winter wheat plants during cold hardening.  相似文献   

14.
Actinomycete complexes were studied in the rhizosphere of three crop species using luminescence microscopy and plating. The concentration of the total prokaryotic biomass and the length of actinomycete mycelium proved higher in the rhizosphere than in root-free soil. Actinomycetes in the rhizosphere of oats (Avena sativa L.), winter rye (Secale cereale L.), and red clover (Trifolium pratense L.) were represented by the genera Streptomyces and Micromonospora and oligosporous species. The length and biomass of actinomycete mycelium proved to decrease while the generic diversity increased in the following sequence: winter rye—oats—red clover. Increasing soil suppression and plant resistance to phytopathogens using mycelial prokaryotes is discussed in the context of environmental safety.  相似文献   

15.
Ten major host-encoded pathogenesis-associated proteins have been found in extracts of intercellular sap of cucumber cotyledons infected with tobacco necrosis virus. By native and two-dimensional SDS-polyacrylamide gel electrophoresis, five major acidic virus-elicited proteins have been identified and classified on the basis of their molecular mass in three groups: group 1 included one protein of 14 kD; group 2, one protein of 28 kD and group 3, three proteins of 37–40 kD. Another five viruselicited proteins were basis, and were again classified in three groups: group 1, included two proteins of 15–16 kD; group 2, two proteins of 22–23 kD; group 3, one protein of 40 kD.  相似文献   

16.
The salivary proteins of Chironomus thummi larvae were separated by SDS gel electrophoresis and characterized by immunological techniques. As a result, five protein fractions (sp-220, sp-180, sp-35, sp-18, and sp-16) with molecular weights Mr=220000, 180000, 35000, 18000 and 16000 were identified in 6%–20% polyacrylamide gradient gels. In addition, three giant proteins fractions (molecular weights exceeding Mr=800000) were detected in composite polyacrylamide-agarose gels. Crossed immunoelectrophoresis allowed us to identify five immunochemically dissimilar organ-specific antigen fractions in the salivary gland secretion. Data were obtained indicating that the protein fractions, sp-220, sp-180, sp-35, sp-18, and sp-16, are immunochemically and structurally similar. The giant secretory proteins and the secretory fractions with low molecular weights were found to be immunochemically unrelated.  相似文献   

17.
The addition of cold shock CSP310 protein to mitochondria isolated from both monocotyledonous (rye, wheat, and maize) and dicotyledonous (pea) plants uncoupled oxidation from phosphorylation. This uncoupling was caused neither by the damage to mitochondrial membranes nor by the activation of alternative cyanide-resistant oxidase. As distinct from the classical plant uncoupling mitochondrial protein (PUMP), CSP310 uncoupling effect was insensitive to BSA. Therefore, we believe that the mechanism of CSP310 action differs from that of known plant uncoupling proteins.  相似文献   

18.
《Insect Biochemistry》1988,18(3):223-228
Galleria cocoon proteins have been extracted by different solubilizing agents. Nine protein bands were observed by gel electrophoresis, with molecular weights ranging from 18 to 420 kD. Three silk proteins of 24, 29 and 30 kD were extracted only in the presence of β-mercaptoethanol, suggesting that they are covalently linked by disulfide bonds to the large fibroin. They are likely to be the products of the highly abundant mRNA of the posterior silk gland cells. In vitro translation analysis of this mRNA yielded 24, 29 and 30 kD proteins. Thus, as in Bombyx, the Galleria silk is composed of several subunits, including fibroin and low molecular weight polypeptides. However, the genes coding for fibroin or low molecular weight silk proteins in Bombyx and Galleria do not show nucleotide base homology.  相似文献   

19.
During cold acclimation, antifreeze proteins (AFPs) that are similar to pathogenesis-related proteins accumulate in the apoplast of winter rye (Secale cereale L. cv Musketeer) leaves. AFPs have the ability to modify the growth of ice. To elucidate the role of AFPs in the freezing process, they were assayed and immunolocalized in winter rye leaves, crowns, and roots. Each of the total soluble protein extracts from cold-acclimated rye leaves, crowns, and roots exhibited antifreeze activity, whereas no antifreeze activity was observed in extracts from nonacclimated rye plants. Antibodies raised against three apoplastic rye AFPs, corresponding to a glucanase-like protein (GLP, 32 kD), a chitinase-like protein (CLP, 35 kD), and a thaumatin-like protein (TLP, 25 kD), were used in tissue printing to show that the AFPs are localized in the epidermis and in cells surrounding intercellular spaces in cold-acclimated plants. Although GLPs, CLPs, and TLPs were present in nonacclimated plants, they were found in different locations and did not exhibit antifreeze activity, which suggests that different isoforms of pathogenesis-related proteins are produced at low temperature. The location of rye AFPs may prevent secondary nucleation of cells by epiphytic ice or by ice propagating through the xylem. The distributions of pathogenesis-induced and cold-accumulated GLPs, CLPs, and TLPs are similar and may reflect the common pathways by which both pathogens and ice enter and propagate through plant tissues.  相似文献   

20.
Antifreeze proteins in winter rye   总被引:15,自引:0,他引:15  
Six antifreeze proteins, which have the unique ability to adsorb onto the surface of ice and inhibit its growth, have been isolated from the apoplast of winter rye leaves where ice forms at subzero temperatures. The rye antifreeze proteins accumulate during cold acclimation and are similar to plant pathogenesis-related proteins, including two endoglucanase-like, two chitinase-like and two thaumatin-like proteins. Immunolocalization of the glucanase-like antifreeze proteins showed that they accumulate in mesophyll cell walls facing intercellular spaces, in pectinaceous regions between adjoining mestome sheath cells, in the secondary cell walls of xylem vessels and in epidermal cell walls. Because the rye antifreeze proteins are located in areas where they could be in contact with ice, they may function as a barrier to the propagation of ice or to inhibit the recrystallization of ice. Antifreeze proteins similar to pathogenesis-related proteins were also found to accumulate in closely-related plants within the Triticum group but not in freezing-tolerant dicotyledonous plants. In winter wheat, the accumulation of antifreeze proteins and the development of freezing tolerance are regulated by chromosome 5. Rye antifreeze proteins may have evolved from pathogenesis-related proteins, but they retain their catalytic activities and may play a dual role in increasing both freezing and disease resistance in overwintering plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号