首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic hydrolysis is considered an efficient and environmental strategy for the degradation of organic waste materials. Compared to mesophilic cellulases, thermostable cellulases with considerable activity are more advantageous in waste paper hydrolysis, particularly in terms of their participation in synergistic action. In this study, the synergistic effect of two different types of thermostable Chaetomium thermophilum cellulases, the endoglucanase CTendo45 and the cellobiohydrolase CtCel6, on five common kinds of waste papers was investigated. CtCel6 significantly enhanced the bioconversion process, and CTendo45 synergistically increased the degradation, with a maximum degree of synergistic effect of 1.67 when the mass ratio of CTendo45/CtCel6 was 5:3. The synergistic degradation products of each paper material were also determined. Additionally, the activities of CTendo45 and CtCel6 were found to be insensitive to various metals at 2 mM and 10 mM ion concentrations. This study gives an initial insight into a satisfactory synergistic effect of C. thermophilum thermostable cellulases for the hydrolysis of different paper materials, which provides a potential combination of enzymes for industrial applications, including environmentally friendly waste management and cellulosic ethanol production.  相似文献   

2.
Bioconversion is a biological process by which organic materials are converted into products with higher biological and commercial value. During its larval stage the black soldier fly Hermetia illucens is extremely voracious and can feed on a wide variety of organic materials. To study the impact of different fruit byproducts on the insect's growth, final larval biomass, substrate reduction, bioconversion parameters, and larval nutritional composition, 10 000 black soldier fly larvae (BSFL) were reared on 7.0 kg of one of three substrates (strawberry, tangerine, or orange) or on a standard diet as a control. The results highlight that BSFL can successfully feed and grow on each of these diets, though their development time, growth rate, and final biomass were differently impacted by the substrates, with strawberry being the most suitable. The lipid and protein contents of BSFL were similar among larvae fed on different substrates; however, major differences were detected in ash, micronutrient, fiber, fatty acid, and amino acid contents. Overall, the results indicate that fruit waste management through the BSFL bioconversion process represents a commercially promising resource for regional and national agrifood companies. Our study offers new perspectives for sustainable and environmentally friendly industrial development by which fruit byproducts or waste might be disposed of or unconventionally enhanced to create secondary products of high biological and economic value, including BSFL biomass as animal feed or, in perspective, as alternative protein source for human nutrition.  相似文献   

3.
The use of waste materials as feedstock for biosynthesis of valuable compounds has been an intensive area of research aiming at diminishing the consumption of non-renewable materials. In this study, P. putida KT2440 was employed as a cell factory for the bioconversion of waste vegetable oil into medium-chain-length Polyhydroxyalkanoates. In the presence of the waste oil this environmental strain is capable of secreting enzymes with lipase activities that enhance the bioavailability of this hydrophobic carbon substrate. It was also found that the oxygen transfer coefficient is directly correlated with high PHA levels in KT2440 cells when metabolizing the waste frying oil. By knocking out the tctA gene, encoding for an enzyme of the tripartite carboxylate transport system, an enhanced intracellular level of mcl-PHA was found in the engineered strain when grown on fatty acids. Batch bioreactors showed that the KT2440 strain produced 1.01 (g⋅L−1) of PHA whereas the engineered ΔtctA P. putida strain synthesized 1.91 (g⋅L−1) after 72 h cultivation on 20 (g⋅L−1) of waste oil, resulting in a nearly 2-fold increment in the PHA volumetric productivity. Taken together, this work contributes to accelerate the pace of development for efficient bioconversion of waste vegetable oils into sustainable biopolymers.  相似文献   

4.
This paper identifies key components of the microbial community involved in the mesophilic anaerobic co-digestion (AD) of mixed waste at Rayong Biogas Plant, Thailand. The AD process is separated into three stages: front end treatment (FET); feed holding tank and the main anaerobic digester. The study examines how the microbial community structure was affected by the different stages and found that seeding the waste at the beginning of the process (FET) resulted in community stability. Also, co-digestion of mixed waste supported different bacterial and methanogenic pathways. Typically, acetoclastic methanogenesis was the major pathway catalysed by Methanosaeta but hydrogenotrophs were also supported. Finally, the three-stage AD process means that hydrolysis and acidogenesis is initiated prior to entering the main digester which helps improve the bioconversion efficiency. This paper demonstrates that both resource availability (different waste streams) and environmental factors are key drivers of microbial community dynamics in mesophilic, anaerobic co-digestion.  相似文献   

5.
Oil palm empty fruit bunch fiber is a lignocellulosic waste from palm oil mills. It is a potential source of xylose which can be used as a raw material for production of xylitol, a high value product. The increasing interest on use of lignocellulosic waste for bioconversion to fuels and chemicals is justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of H(2)SO(4) concentration, reaction temperature and reaction time for production of xylose. Batch reactions were carried out under various reaction temperature, reaction time and acid concentrations and Response Surface Methodology (RSM) was followed to optimize the hydrolysis process in order to obtain high xylose yield. The optimum reaction temperature, reaction time and acid concentration found were 119 degrees C, 60 min and 2%, respectively. Under these conditions xylose yield and selectivity were found to be 91.27% and 17.97 g/g, respectively.  相似文献   

6.
Natural nootkatone is a high value ingredient for the flavor and fragrance industry because of its grapefruit flavor/odor, low sensorial threshold and low availability. Valencene conversion into nootkatol and nootkatone is known to be catalyzed by cytochrome P450 enzymes from both prokaryotic and eukaryotic organisms, but so far development of a viable bioconversion process using either native microorganisms or recombinant enzymes was not successful. Using an in silico gene-mining approach, we selected 4 potential candidate P450 enzymes from higher plants and identified two of them that selectively converted (+)-valencene into β-nootkatol with high efficiency when tested using recombinant yeast microsomes in vitro. Recombinant yeast expressing CYP71D51v2 from tobacco and a P450 reductase from arabidopsis was used for optimization of a bioconversion process. Bioconversion assays led to production of β-nootkatol and nootkatone, but with low yields that decreased upon increase of the substrate concentration. The reasons for this low bioconversion efficiency were further investigated and several factors potentially hampering industry-compatible valencene bioconversion were identified. One is the toxicity of the products for yeast at concentrations exceeding 100 mg L−1. The second is the accumulation of β-nootkatol in yeast endomembranes. The third is the inhibition of the CYP71D51v2 hydroxylation reaction by the products. Furthermore, we observed that the formation of nootkatone from β-nootkatol is not P450-dependent but catalyzed by a yeast component. Based on these data, we propose new strategies for implementation of a viable P450-based bioconversion process.  相似文献   

7.
Changes in the chemical composition of cotton plant stems used as a substrate for solid-phase cultivation of the fungus Panus tigrinus were studied as well as the effect of these changes on properties of the pressed materials made of these stems. During the first 3 days of growth, the fungus better consumed cellulose; then, the rate of cellulose consumption was comparable with that of lignin. Intensity and pattern of these changes depended on the age of inoculum. The rate of cotton plant waste biodegradation was higher when a 3-day-old incoculum was used. The pressed materials made of the raw stuff treated with a 3-day-old inoculum of P. tigrinus for 2-3 days displayed better characteristics. Annually, large amounts of lignocellulose stuff is lost while processing of agricultural waste: straw, awn, plant stems, etc. In the countries with developed cotton growing, the annual amount of only guza-paya (dry cotton plant stems) reaches several million tons. To solve this problem, bioconversion of these wastes is studied to manufacture useful products and materials.  相似文献   

8.
Aim, Scope and Background  When materials are recycled they are made available for use for several future life cycles and can therefore replace virgin material more than just once. In order to analyse the optimal waste management system for a given material, the authors have analysed the material flows in a life cycle perspective. It is important to distinguish this approach for material flow analysis for a given material from life cycle analysis of products. A product life cycle analysis analyses the product system from cradle to grave, but uses some form of allocation in order to separate the life cycle of one product from another in cases where component materials are recycled. This paper does not address allocation of burdens between different product systems, but rather focuses on methodology for decision making for waste management systems where the optimal waste management system for a given material is analysed. The focus here is the flow of the given material from cradle (raw material extraction) to grave (the material, or its inherent energy, is no longer available for use). The limitation on the number of times materials can be recycled is set by either the recycling rate, or the technical properties of the recycled material. Main Features  This article describes a mathematical geometric progression approach that can be used to expand the system boundaries and allow for recycling a given number of times. Case studies for polyethylene and paperboard are used to illustrate the importance of including these aspects when part of the Goal and Scope for the LCA study is to identify which waste management treatment options are best for a given material. The results and discussion examine the different conclusions that can be reached about which waste management option is most environmentally beneficial when the higher burdens and benefits of recycling several times are taken into account. Results  In order to assess the complete picture of the burdens and benefits arising from recycling the system boundaries must be expanded to allow for recycling many times. A mathematical geometric progression approach manages to take into account the higher burdens and benefits arising from recycling several times. If one compares different waste management systems, e.g. energy recovery with recycling, without expanding the system to include the complete effects of material recycling one can reach a different conclusion about which waste management option is preferred. Conclusions  When the purpose of the study is to compare different waste management options, it is important that the system boundaries are expanded in order to include several recycling loops where this is a physical reality. The equations given in this article can be used to include these recycling loops. The error introduced by not expanding the system boundaries can be significant. This error can be large enough to change the conclusions of a comparative study, such that material recycling followed by incineration is a much better option than waste incineration directly. Recommendations and Outlook  When comparing waste management solutions, where material recycling is a feasible option, it is important to include the relevant number of recycling loops to ensure that the benefits of material recycling are not underestimated. The methodology presented in this article should be used in future comparative studies for strategic decision-making for waste management. The approach should not be used for LCAs for product systems without due care, as this could lead to double counting of the benefits of recycling (depending on the goal and scope of the analysis). For materials where the material cycle is more of a closed loop and one cannot truly say that recycled materials replace virgin materials, a more sophisticated approach will be required, taking into account the fact that recycled materials will only replace a certain proportion of virgin materials.  相似文献   

9.
Disposal of paper mill waste by bioconversion is a novel approach which allows a direct conversion of cellulosic solid waste into fungal biomass. A cellulolytic microorganism Myrothecium verrucaria has been used for protein production under batch conditions in flasks. Biomass yield of 0.375 g per g of substrate consumed with 50–60% solid waste usage was observed. The nutritional quality of the biomass in terms of fat and protein contents shows promise for feed supplementation of monogastric animals.  相似文献   

10.
Development time, survival and final nutrient content of Hermetia illucens L. larvae depends on the substrates in which they develop. Mixing different waste types together can increase the performance and survival of the larvae, as well as their waste reduction. The main objective of this study was to evaluate the effect of different ratios of mixed fruit and vegetable waste with poultry manure on larval development time, size, biomass production, survival, bioconversion and waste reduction. Freshly hatched neonates (90 mg; approx. 6000 individuals) were placed on 12 kg of a mixture of fruit and vegetable waste and fresh, unprocessed poultry manure and held at 28 ± 0.5°C. Inclusion of fruit and vegetable waste varied from 0% to 100% in 10% increments. Initial temperature of the substrate was also measured. The individual mass of larvae increased significantly as more fruit and vegetable waste was included, from less than 81.3 ± 6.6 mg on poultry manure only to an average size of 211.6 ± 6.0 mg at 100% fruit and vegetable waste. After approximately 60% inclusion of fruit and vegetable waste the performance and survival of the larvae increased significantly while development time was reduced. A combination of high fruit and vegetable waste and low initial temperatures resulted in lower development time overall. The mixing of wastes can be applied in industry to further the goals of waste reduction and biomass production while incorporating low-quality wastes like poultry manure.  相似文献   

11.
Lumping kinetics models were built for the biological treatment of acetone–butanol–ethanol (ABE) fermentation wastewater by oleaginous yeast Trichosporon cutaneum with different fermentation temperatures. Compared with high temperature (33°C, 306?K) and low temperature (23°C, 296?K), medium temperature (28°C, 301?K) was beneficial for the cell growth and chemical oxygen demand (COD) degradation during the early stage of fermentation but the final yeast biomass and COD removal were influenced little. By lumping method, the materials in the bioconversion network were divided into five lumps (COD, lipid, polysaccharide, other intracellular products, other extracellular products), and the nine rate constants (k1k9) for the models can well explain the bioconversion laws. The Gibbs free energy (G) for this bioconversion was positive, showing that it cannot happen spontaneous, but the existence of yeast can after the chemical equilibrium and make the bioconversion to be possible. Overall, the possibility of using lumping kinetics for elucidating the laws of materials conversion in the biological treatment of ABE fermentation wastewater by T. cutaneum has been initially proved and this method has great potential for further application.  相似文献   

12.
13.
Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as 1,3-propanediol (1,3-PD), succinate, ethanol, propionate, and hydrogen, through microbial fermentation. Another method of waste material utilization is the application of crude glycerol in blends with other wastes (e.g., tomato waste hydrolysate). However, crude glycerol, a by-product of biodiesel production, has many impurities which can limit the yield of metabolites. In this mini-review we summarize the effects of crude glycerol impurities on various microbial fermentations and give an overview of the metabolites that can be synthesized by a number of prokaryotic and eukaryotic microorganisms when cultivated on glycerol.  相似文献   

14.
【目的】合成气发酵对大力开发可再生资源和促进国家可持续发展具有重要意义,研究旨在探究不同生境微生物转化H2/CO2产乙酸及其合成气发酵的潜力。【方法】采集剩余污泥、牛粪、产甲烷污泥和河道底物样品在中温(37 °C)条件下生物转化H2/CO2气体,将来源于牛粪样品的H2/CO2转化富集物用于合成气发酵,通过454高通量技术和定量PCR技术分析复杂微生物群落的组成,GC气相色谱法检测气体转化产生的挥发性脂肪酸(VFAs)浓度。【结果】牛粪和剩余污泥微生物利用H2/CO2气体生成乙酸、乙醇和丁酸等,最高乙酸浓度分别为63 mmol/L和40 mmol/L,明显高于河道底物和产甲烷污泥样品的最高乙酸浓度3 mmol/L和16 mmol/L。牛粪和剩余污泥微生物中含有种类多样化的同型产乙酸菌,剩余污泥中同型产乙酸菌主要为Clostridium spp.、Sporomusa malonica和Acetoanaerobium noterae,牛粪中则为Clostridium spp.、Treponema azotonutricium和Oxobacter pfennigii。【结论】同型产乙酸菌的丰富度和数量两个因素都对复杂微生物群落转化H2/CO2产乙酸效率至关重要;转化H2/CO2得到的富集物可用于合成气发酵产乙酸和乙醇,这为基于混合培养技术的合成气发酵提供了依据。  相似文献   

15.
Hao  Zhi-kui  Li  Jian-song  Wang  Dan-hua  He  Fei  Xue  Jing-shi  Yin  Liang-hong  Zheng  Hua-bao 《Biotechnology letters》2022,44(4):623-633
Biotechnology Letters - Shellfish waste is a primary source for making N-acetyl-d-glucosamine. Thus, establishing a high-efficiency and low-cost bioconversion method to produce...  相似文献   

16.
The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor.  相似文献   

17.
Different used paper materials and mixtures thereof were saccharified with Penicillium funiculosum cellulase. Non-similar biodegradation patterns were concluded to be operating as well as declining bioconversion efficiencies with increasing biodegradation. Biowaste mixtures were less effectively biodegraded indicating the importance of separating biowaste into distinctive materials prior to developing it as a resource of bioproduct synthesis.  相似文献   

18.
The enzymatic degradation of polysaccharides to monosaccharides is an essential step in bioconversion processes of lignocellulosic materials. Alkali treated brewers spent grain was used as a model substrate for the study of cellulose and hemicellulose hydrolysis by Fusarium oxysporum enzyme extract. The results obtained showed that cellulose and hemicellulose conversions are not affected by the same factors, implementing different strategies for a successful bioconversion. Satisfactory cellulose conversion could be achieved by increasing the enzyme dosage in order to overcome the end-product inhibition, while the complexity of hemicellulose structure imposes the presence of specific enzyme activities in the enzyme mixture used. All the factors investigated were combined in a mathematical model describing and predicting alkali treated brewers spent grain conversion by F. oxysporum enzyme extract.  相似文献   

19.
木质素降解菌shu-0801降解玉米废弃物的研究   总被引:2,自引:0,他引:2  
目的:研究分离到的木质素降解菌降解玉米废弃物效果.方法:利用苯胺蓝法从土壤中分离到木质素降解菌shu-0801.结果:研究表明shu-0801木质素降解菌能够显著提高纤维素的转化,提高纤维素酶的降解效率,还原糖的生成量明显提高,shu-0801菌与玉米秸秆粉共培养,可降解玉米废弃物干重约20%.结论:分离到木质素菌降解木质素效率较高,属巨大芽孢杆菌属.  相似文献   

20.
A study was conducted to determine the effect of various low cost organic wastes as flavinogenic factors and the various concentrations at which they induced flavinogenecity resulting in higher yields of riboflavin. A high-yielding riboflavin strain; Eremothecium ashbyii NRRL 1363 was chosen to determine the flavinogenicity. Carbon source at 50 g l(-1) (dextrose equivalents) of molasses and nitrogen source at 50 g l(-1) (weight/volume) of peanut seed cake were found to be optimal levels to yield higher riboflavin. Among the organic wastes, (beef extract, hog casings, blood meal, fish meal) hog casings in association with fish meal supported the highest yield of riboflavin. Among the different recovery processes studied, a vacuum drying process was the most efficient allowing maximum yield, followed by drying at 90 degrees C and freeze-drying. It is apparent from this study that inexpensive or waste organic materials could induce E. ashbyii to synthesize and secrete riboflavin at higher levels in the medium and this could be purified using a vacuum drying process. This bioconversion process allows us to recycle the biomaterials and produce a value-added product of economic importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号