首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bioagriculture and healthy lifestyle are trends of the twenty-first century. Bioagriculture involves the breeding of crops without using modern synthetic substances. Kamut brand wheat is one of the popular biocereals grown mainly in the USA and Europe. This cereal has the status of ancient wheat, not only because it has been grown since the era of the ancient Egyptian civilization, but also for its properties favorable for modern breeding programs and modern food marketing. In spite of Kamut’s® interesting history and stable place in the market, it is not a common subject of genetic studies. It is also interesting that it has not been successfully taxonomically classified yet. There are a few studies which classify this tetraploid wheat as Triticum polonicum L., T. turanicum Jakubz., T. turgidum L. and T. durum Desf. These studies are based on cytological and comparative methods. We chose molecular (transposable element resistance gene analog polymorphism, diversity arrays technology, sequencing of genes SBEIIa, and ψLpx-A1_like) and statistical methods to classify Kamut® wheat. According to our experiments we suggest that Kamut brand wheat originated as a natural hybrid between Triticum dicoccon conv. dicoccon and T. polonicum and is not original ancient Egyptian wheat. We suggest that Etruscan wheat has the same parents as Kamut®.  相似文献   

3.
We describe Morishitium polonicum malayense n. subsp. from Asian glossy starlings (Aplonis panayensis strigata) (Horsfield, 1821) (Passeriformis: Sturnidae) caught in Malaysia. The trematodes had parasitized the air sacs and the thoracic and body cavities of 40 out of 67 (59.7%) birds examined. The specimens each had an oral sucker, a postpharyngeal genital pore, and tandem testes, but lacked a ventral sucker. The morphological characteristics of our specimens were similar to those of M. polonicum polonicum (Machalska, 1980) from Poland. However, the anterior extremity of vitelline follicles of the present specimens sometimes extended to the level of pharynx. The oral sucker width, oral sucker width/pharynx width ratio, and intertesticular space metrics differed from those of M. p. polonicum. The maximum-likelihood trees based on the cytochrome c oxidase subunit I (COI) and the internal transcribed spacer 2 (ITS2) sequences indicated that the species from the present study formed a sister group with M. p. polonicum from the Czech Republic. The p-distances of COI and ITS2 sequences between the present specimens and M. p. polonicum from the Czech Republic were 6.9–7.5% and 0.6%, respectively. These genetic divergences indicate the border for intra- or interspecific variation of digeneans. The definitive host species and geographical distribution of the current specimens were distinct from those of M. p. polonicum from Europe. We thus concluded that the present specimens are ranked as a new subspecies of M. polonicum, namely M. polonicum malayense n. subsp.  相似文献   

4.
Inflorescence architecture is an important determinant of crop productivity. The number of spikelets produced by the wheat inflorescence meristem (IM) before its transition to a terminal spikelet (TS) influences the maximum number of grains per spike. Wheat MADS-box genes VERNALIZATION 1 (VRN1) and FRUITFULL 2 (FUL2) (in the SQUAMOSA-clade) are essential to promote the transition from IM to TS and for spikelet development. Here we show that SQUAMOSA genes contribute to spikelet identity by repressing MADS-box genes VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), SHORT VEGETATIVE PHASE 1 (SVP1), and SVP3 in the SVP clade. Constitutive expression of VRT2 resulted in leafy glumes and lemmas, reversion of spikelets to spikes, and downregulation of MADS-box genes involved in floret development, whereas the vrt2 mutant reduced vegetative characteristics in spikelets of squamosa mutants. Interestingly, the vrt2 svp1 mutant showed similar phenotypes to squamosa mutants regarding heading time, plant height, and spikelets per spike, but it exhibited unusual axillary inflorescences in the elongating stem. We propose that SQUAMOSA–SVP interactions are important to promote heading, formation of the TS, and stem elongation during the early reproductive phase, and that downregulation of SVP genes is then necessary for normal spikelet and floral development. Manipulating SVP and SQUAMOSA genes can contribute to engineering spike architectures with improved productivity.

Functional characterization of developmental genes reveals ways to modify the wheat spike architecture to increase the number of grains and improve productivity.  相似文献   

5.
Seventy-two Xinjiang Triticum and Triticum polonicum accessions were subjected to AFLP analyses to discuss the origin of Triticum petropavlovskyi. A total of 91 putative loci were produced by four primer combinations. Among them 56 loci were polymorphic, which is equivalent to 61.53 % of the total number of putative loci. Genetic diversity among 11 T. petropavlovskyi accessions was narrow due to the lowest number (32) of polymorphic loci among the wheat species. Forty four polymorphic loci were found in T. aestivum and T. compactum, whereas the highest polymorphism was observed in T. polonicum. On the basis of the UPGMA clustering and PCO grouping and genetic similarity estimates from the AFLPs, we noted that T. petropavlovskyi was more closely related to the Chinese accessions of T. polonicum than to T. polonicum from other countries. Two accessions of T. aestivum were grouped with T. petropavlovskyi in the UPGMA clustering. Both of them were similar to T. petropavlovskyi in respect of spike structure, i.e. the presence of awn, glume awn and also the presence of leaf pubescence. Six loci, which were commonly absent in Chinese T. polonicum, were also absent in almost all of the T. petropavlovskyi accessions. Findings of this study reduced the probability of an independent allopolyploidization event in the origin of T. petropavlovskyi and indicated a greater degree of gene flow between T. aestivum and T. polonicum leading to T. petropavlovskyi. It is most likely that the P-gene of T. petropavlovskyi hexaploid wheat was introduced from T. polonicum to T. aestivum via a spontaneous introgression or breeding effort.  相似文献   

6.

Background and Aims

The inflorescence of grass species such as wheat, rice and maize consists of a unique reproductive structure called the spikelet, which is comprised of one, a few, or several florets (individual flowers). When reproductive growth is initiated, the inflorescence meristem differentiates a spikelet meristem as a lateral branch; the spikelet meristem then produces a floret meristem as a lateral branch. Interestingly, in wheat, the number of fertile florets per spikelet is associated with ploidy level: one or two florets in diploid, two or three in tetraploid, and more than three in hexaploid wheats. The objective of this study was to identify the mechanisms that regulate the architecture of the inflorescence in wheat and its relationship to ploidy level.

Methods

The floral anatomy of diploid (Triticum monococcum), tetraploid (T. turgidum ssp. durum) and hexaploid (T. aestivum) wheat species were investigated by light and scanning electron microscopy to describe floret development and to clarify the timing of the initiation of the floret primordia. In situ hybridization analysis using Wknox1, a wheat knotted1 orthologue, was performed to determine the patterning of meristem formation in the inflorescence.

Key Results

The recessive natural mutation of tetraploid (T. turgidum ssp. turgidum) wheat, branching head (bh), which produces branched inflorescences, was used to demonstrate the utility of Wknox1 as a molecular marker for meristematic tissue. Then an analysis of Wknox1 expression was performed in diploid, tetraploid and hexaploid wheats and heterochronic development of the floret meristems was found among these wheat species.

Conclusions

It is shown that the difference in the number of floret primordia in diploid, tetraploid and hexaploid wheats is caused by the heterochronic initiation of floret meristem development from the spikelet meristem.Key words: Triticum, wheat, inflorescence, spikelet, floret, meristem, heterochrony, heterochronic development, knotted1, polyploidy  相似文献   

7.
Allohexaploid wheat was derived from interspecific hybridization, followed by spontaneous chromosome doubling. Newly synthesized hexaploid wheat by crossing Triticum turgidum and Aegilops tauschii provides a classical model to understand the mechanisms of allohexaploidization in wheat. However, immediate chromosome level variation and microsatellite level variation of newly synthesized hexaploid wheat have been rarely reported. Here, unreduced gametes were applied to develop synthesized hexaploid wheat, NA0928, population by crossing T. turgidum ssp. dicoccum MY3478 and Ae. tauschii SY41, and further S0–S3 generations of NA0928 were assayed by sequential cytological and microsatellite techniques. We demonstrated that plentiful chromosomal structural changes and microsatellite variations emerged in the early generations of newly synthesized hexaploid wheat population NA0928, including aneuploidy with whole-chromosome loss or gain, aneuploidy with telosome formation, chromosome-specific repeated sequence elimination (indicated by fluorescence in situ hybridization) and microsatellite sequence elimination (indicated by sequencing), and many kinds of variations have not been previously reported. Additionally, we reported a new germplasm, T. turgidum accession MY3478 with excellent unreduced gametes trait, and then succeeded to transfer powdery mildew resistance from Ae. tauschii SY41 to synthesized allohexaploid wheat population NA0928, which would be valuable resistance resources for wheat improvement.  相似文献   

8.
Study was done to compare the response of Triticum aestivum (hexaploid), Triticum durum (tetraploid) and Triticum monococcum (diploid) wheat species to the elevated CO2 using Free Air CO2 Enrichment (FACE) facility. It was demonstrated that the modern cultivar of wheat Triticum aestivum (hexaploid) was largely sink limited. It appeared to have less photosynthesis per unit leaf area than Triticum monococcum (diploid wheat). While leaf size, grain weight and amylase activity increased with the ploidy level from diploid to hexaploid wheat forms, the photosynthetic rate was reduced significantly. These wheat species responded differentially to the elevated CO2. The larger leaf area and greater seed weight and presence of 38 KDa protein band caused by elevated CO2 had additive effect in improving the productivity of hexaploid wheat by changing the source sink ratio. Whereas, such a source sink balance was not induced by elevated CO2 in diploid wheat. The increasing CO2 may present opportunities to breeders and possibly allow them to select for cultivars responsive to the elevated CO2 with better sink potential.Key words: Elevated CO2, FACE technology, Photosynthesis, Seed weight, Source sink ratio, Triticum  相似文献   

9.
Single- and low-copy genes are less likely to be subject to concerted evolution. Thus, they are appropriate tools to study the origin and evolution of polyploidy plant taxa. The plastid 3-phosphoglycerate kinase gene (Pgk-1) sequences from 44 accessions of Triticum and Aegilops, representing diploid, tetraploid, and hexaploid wheats, were used to estimate the origin of Triticum petropavlovskyi. Our phylogenetic analysis was carried out on exon+intron, exon and intron sequences, using maximum likelihood, Bayesian inference and haplotype networking. We found the D genome sequences of Pgk-1 genes from T. petropavlovskyi are similar to the D genome orthologs in T. aestivum, while their relationship with Ae. tauschii is more distant. The A genome sequences of T. petropavlovskyi group with those of T. polonicum, but its Pgk-1 B genome sequences to some extent diverge from those of other species of Triticum. Our data do not support for the origin of T. petropavlovskyi either as an independent allopolyploidization event between Ae. tauschii and T. polonicum, or as a monomendelian mutation in T. aestivum. We suggest that T. petropavlovskyi originated via spontaneous introgression from T. polonicum into T. aestivum. The dating of this introgression indicates an age of 0.78 million years; a further mutation event concerning the B genome occurred 0.69 million years ago.  相似文献   

10.
A poorly studied species of hexaploid wheat Triticum petropavlovskyi Udacz. et Migusch. was compared with common wheat Triticum aestivum L. by means of monosomic and genetic analyses of F2 hybrids. Triticum petropavlovskyi was found to carry 13 dominant genes determining its morphological and physiological characters and regular bivalent conjugation of chromosomes. These genes were allelic to the respective genes of common wheat and were located in the same chromosomes. The modes of gene interaction were also the same. There was simple dominance for most genes studied and complementary interaction for the genes of hybrid dwarfism and hybrid necrosis. Triticum petropavlovskyi had the following dominant genes: Hg (downy glume); Rg1 (red glume color); Hl (downy leaf); Hn (downy node); Pa (pubescent auricles); Q (speltlike ears); D1 (grass-clump dwarfism); Ne1 (hybrid necrosis); Ph1 and Ph2 (genes of bivalent conjugation preventing homoeologous chromosomes from pairing); and Vrn1, Vrn2, Vrn3, and Vrn4 (genes of the spring habit). The gene Vrn1, which caused an increase in ear emergence time and a pronounced response to vernalization, was poorly expressed. T. petropavlovskyi was earlier demonstrated to have a species-specific gene P or Eg (elongated glume), which was not allelic to the gene Eg of the tetraploid T. polonicum L. The data obtained indicate that T. petropavlovskyi has originated from T. aestivum via mutations.  相似文献   

11.
An electrophoretic investigation of the glutenin subunits and gliadin components in F4 progenies between the hexaploid wheat (Triticum aestivum L. cv. Bezostaya 1) and the wild tetraploid wheat (Triticum turgidum var.dicoccoides Körn) is carried out. The possibility of inserting subunits and components of Glu B1, Glu B3 and Gli B1 loci fromT. dicoccoides in F4 progenies ofT. aestivum is investigated. For this purpose parental forms with different allelic variants in these loci are chosen. It is established cytologically that the chromosomal number of progenies is 42. Genotype classes and the frequency of progenies are analyzed for which we judge by the phenotype manifestation of the allelic variants of the loci investigated. Different frequency of the transfer of subunits and components of Glu B1, Glu B3 and Gli B1 loci fromT. dicoccoides in the hexaploid wheat genome is established and it is connected with the disposition of the loci on chromosomes arms.  相似文献   

12.
Dwarfing polish wheat is a dwarfing accession of Triticum polonicum L. from Xinjiang of China. In the present study, the artificial hybridization between dwarfing polish wheat and two accessions of Aegilops tauschii Cosson. (AS60 and AS65) was carried out, and the F1 hybrids were obtained successfully without using embryo rescue techniques for the first time. The crossabilities of hybrids T. polonicum × Ae. tauschii (AS60) and T. polonicum × Ae. tauschii (AS65) were 1.67% and 0.60% respectively. Only the hybrids of T. polonicum × Ae. tauschii (AS60) germinated well, and 24 F1 hybrid plants were obtained. All the F1 hybrid plants grew vigorously, and the morphological traits were similar to bread wheat. The F1 plants had some obvious traits inherited from T. polonicum and Ae. tauschii and were completely sterile. Chromosome pairing in the hybrid was characterized by a large number of univalents, with an average of 20.56 and 0.22 bivalents per PMC, and no ring bivalents and multivalents were observed. Furthermore, the potential value of the F1 hybrids between T. polonicum and Ae. tauschii for studying wheat origin and breeding are discussed. The article is published in the original.  相似文献   

13.
14.
Winter wheat (Triticum spp.) varieties require long exposures to low temperatures to flower, a process called vernalization. The VRN2 locus includes two completely linked zinc finger-CCT domain genes (ZCCT1 and ZCCT2) that act as flowering repressors down-regulated during vernalization. Deletions or mutations in these two genes result in the elimination of the vernalization requirement in diploid wheat (Triticum monococcum). However, natural allelic variation in these genes has not been described so far in polyploid wheat (tetraploid Triticum turgidum and hexaploid Triticum aestivum). A tetraploid wheat population segregating for both VRN-A2 and VRN-B2 loci facilitated the characterization of different alleles. Comparisons between functional and nonfunctional alleles revealed that both ZCCT1 and ZCCT2 genes are able to confer vernalization requirement and that different ZCCT genes are functional in different genomes. ZCCT1 and ZCCT2 proteins from nonfunctional vrn2 alleles have mutations at arginine amino acids at position 16, 35, or 39 of the CCT domain. These positions are conserved between CCT and HEME ACTIVATOR PROTEIN2 (HAP2) proteins, supporting a model in which the action of CCT domains is mediated by their interactions with HAP2/HAP3/HAP5 complexes. This study also revealed natural variation in gene copy number, including a duplication of the functional ZCCT-B2 gene and deletions or duplications of the complete VRN-B2 locus. Allelic variation at the VRN-B2 locus was associated with a partially dominant effect, which suggests that variation in the number of functional ZCCT genes can be used to expand allelic diversity for heading time in polyploid wheat and, hopefully, improve its adaptation to different environments.  相似文献   

15.
 Homoeologous pairing at metaphase I was analyzed in standard-type, ph2b, and ph1b hybrids of Triticum aestivum (common, bread or hexaploid wheat) and T. sharonense in order to establish the homoeologus relationships of T. sharonense chromosomes to hexaploid wheat. Chromosomes of both species, and their arms, were identified by C-banding. Normal homoeologous relationships for the seven chromosomes of the Ssh genome, and their arms, were revealed, which implies that no apparent chromosome rearrangement occurred in the evolution of T. sharonense relative to wheat. All three types of hybrids with low-, intermediate-, and high-pairing level showed preferential pairing between A-D and B-Ssh. A close relationship of the Ssh genome to the B genome of bread wheat was confirmed, but the results provide no evidence that the B genome was derived from T. sharonense. Data on the pairing between individual chromosomes of T. aestivum and T. sharonense provide an estimate of interspecific homoeologous recombination. Received: 14 October 1996 / Accepted: 25 October 1996  相似文献   

16.

Key message

Sequence comparison between spelt and common wheat reveals that the former has huge potential in enriching the genetic variation of the latter.

Abstract

Genetic variation is the foundation of crop improvement. By comparing genome sequences of a Triticum spelta accession and one of its derived hexaploid lines with the sequences of the international reference genotype Chinese Spring, we detected variants more than tenfold higher than those present among common wheat (T. aestivum L) genotypes. Furthermore, different from the typical ‘V-shaped’ pattern of variant distribution often observed along wheat chromosomes, the sequence variation detected in this study was more evenly distributed along the 3B chromosome. This was also the case between T. spelta and the wild emmer genome. Genetic analysis showed that T. spelta and common wheat formed discrete groups. These results showed that, although it is believed that the spelt and common wheat are evolutionarily closely related and belong to the same species, a significant sequence divergence exists between them. Thus, the values of T. spelta in enriching the genetic variation of common wheat can be huge.
  相似文献   

17.
The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.  相似文献   

18.
Recent declines in costs accelerated sequencing of many species with large genomes, including hexaploid wheat (Triticum aestivum L.). Although the draft sequence of bread wheat is known, it is still one of the major challenges to developlocus specific primers suitable to be used in marker assisted selection procedures, due to the high homology of the three genomes. In this study we describe an efficient approach for the development of locus specific primers comprising four steps, i.e. (i) identification of genomic and coding sequences (CDS) of candidate genes, (ii) intron- and exon-structure reconstruction, (iii) identification of wheat A, B and D sub-genome sequences and primer development based on sequence differences between the three sub-genomes, and (iv); testing of primers for functionality, correct size and localisation. This approach was applied to single, low and high copy genes involved in frost tolerance in wheat. In summary for 27 of these genes for which sequences were derived from Triticum aestivum, Triticum monococcum and Hordeum vulgare, a set of 119 primer pairs was developed and after testing on Nulli-tetrasomic (NT) lines, a set of 65 primer pairs (54.6%), corresponding to 19 candidate genes, turned out to be specific. Out of these a set of 35 fragments was selected for validation via Sanger''s amplicon re-sequencing. All fragments, with the exception of one, could be assigned to the original reference sequence. The approach presented here showed a much higher specificity in primer development in comparison to techniques used so far in bread wheat and can be applied to other polyploid species with a known draft sequence.  相似文献   

19.
Although the genetic linkage map of Triticum tauschil, the D-genome progenitor of wheat its available, its use for linkage analysis of hexaploid wheat chromosome regions is hampered by the lack of polymorphism in wheat. Here we describe a strategy to identity probes that detect a high degree of polymorphism in wheat. The strategy involves the use of DNA probes that detect null alleles. About 16% of the Pstl genomic clones from Triticum tauschil detect null alleles in the species. The probes that detect null alleles reveal high degree of polymorphism among hexaploid wheat cultivars. The probes selected following this strategy are expected to detect null alleles throughout the tribe Triticeae, therefore, reveal high degree of polymorphism.  相似文献   

20.
Storage proteins, prolamins, were studied in ten introgression lines of common wheat bred with involvement of Triticum timopheevii (Tt) Zhuk. and five commercial hexaploid wheat cultivars. The lines are resistant to leaf rust. A comparative analysis of the storage proteins in the Triticum aestivum L. (Ta) introgression lines and the parental forms allowed us to (1) detect the active genes of prolamins on the chromosomes homeologous groups 1 and 6 in the introgression lines of T. aestivum and T. timopheevii; (2) clarify their origin; (3) identify the chromosome attribution of the products; (4) estimate the degree of introgression and postulate the introgression mechanisms; and (5) predict the bread-making quality of these introgression lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号