首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nine red maple cultivars originating in different USDA hardiness zones were grown in containers in 1995 and 1996 prior to laboratory procedures to determine root cell membrane thermostability.Electrolyte leakage from excised root tissue exposed for 30 min to temperatures ranging from 20 to 63°C, was used to assess cellular injury of unsuberized, current season, fine roots.Electrolyte leakage was an effective means for measuring cell membrane thermostability in root tissue. The critical killing temperatures of root tissue of cultivars evaluated ranged from 52.0±0.8°C to 53.3±0.5°C, indicating minimal differences in root membrane thermostability.Critical temperatures for cultivars selected from the northern part of the native range did not differ from cultivars originating elsewhere.  相似文献   

2.
We explored the effect of high‐growth temperatures on a dominant North American boreal tree, black spruce [Picea mariana (Mill.) B.S.P.]. In 2004 and 2005, we grew black spruce at either 22 °C/16 °C day/night temperatures [low temperature (LT)] or 30°/24 °C [high temperature (HT)] and determined how temperature affected growth, leaf morphology, photosynthesis, respiration and thermotolerance. HT spruce were 20% shorter, 58% lighter, and had a 58% lower root : shoot ratio than LT trees. Mortality was negligible in the LT treatment, but up to 14% of HT seedlings died by the end of the growing season. HT seedlings had a higher photosynthetic temperature optimum, but net photosynthesis at growth temperatures was 19–35% lower in HT than LT trees. HT seedlings had both a lower apparent maximum ribulose‐1,5‐bisphosphate carboxylation capacity (Vcmax) and a lower apparent maximum electron transport rate (Jmax) than LT trees, indicating reduced allocation to photosynthetic components. Consistently, HT needles had 26% lower leaf nitrogen content than LT needles. At each measurement temperature, HT seedlings had 20–25% lower respiration rates than LT trees; however, this did not compensate for reduced photosynthetic rates at growth temperature, leading to a greater ratio of dark respiration to net carbon dioxide assimilation rate in HT trees. HT needles had 16% lower concentrations of soluble sugars than LT needles, but similar starch content. Growth at high temperatures increased the thermotolerance of black spruce. HT trees showed less PSII inhibition than LT seedlings and no increase in electrolyte leakage when briefly exposed to 40–57 °C. While trees that develop at high temperatures have enhanced tolerance for brief, extreme heat events, the reduction in root allocation indicates that seedlings will be more susceptible to episodic soil drying and less competitive for belowground resources in future climates of the boreal region.  相似文献   

3.
Stattin  Eva  Lindström  Anders 《Plant and Soil》1999,217(1-2):173-181
The influence of soil temperature on the root freezing tolerance of one-year-old containerized Scots pine (Pinus sylvestris L.) seedlings was investigated. In addition, the TTC and electrolyte leakage methods were evaluated in terms of their suitability for use in detecting damage to roots caused by freezing. In mid-August, seedlings were placed in three thermostat-controlled soil beds in a greenhouse with an initial soil temperature of 14.3 °C. Soil temperature was lowered in two of the soil beds, resulting in temperatures of 10.7 and 5.3 °C respectively. Each soil temperature, i.e. 14.3, 10.7 and 5.3 °C was maintained for eight weeks. Starting in early September, damage to roots induced by artificial freezing was estimated biweekly by measuring electrolyte leakage, triphenyl tetrazolium chloride (TTC) reduction and potential root growth in a three-week cultivation test. In addition, the root freezing tolerance of seedlings placed outdoors was tested. Measurements showed that these seedlings were exposed to soil temperatures ranging from 13.0 °C in mid-August to 0.5 °C in November. Generally, the development of root freezing tolerance was more pronounced for seedlings exposed to lower (0.5 and 5.3 °C) soil temperatures compared with those exposed to higher (10.7 and 14.3 °C) ones. Root freezing tolerance was highest among the seedlings placed outdoors which were also exposed to the lowest soil temperatures registered in the study. To examine the effect of a temporary warm period, the soil temperature in one treatment was increased from 5.4 °C to 13.9 °C, maintained at the latter temperature for two weeks in October and then lowered to 5.7 °C. Root freezing tolerance was reduced by exposure to the warmer soil temperature. However, after four weeks at the colder soil temperature, the tolerance of the seedlings had returned to the level measured prior to exposure to the warm soil temperature. Methods based on the measurement of root electrolyte leakage and TTC reduction were both found to have limitations when used to detect root freezing damages in containerized seedlings. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Summary A model was developed to describe interactive effects of exposure time and treatment on thermostability of excisedIllicium parviflorum Michx. root cell membranes using electrolyte leakage (Lc) procedures. Roots were moved from 25°C to treatment temperatures between 35°C and 60°C for 30 to 300 min. A sigmoidal response described Lc increases with increasing temperature at selected time exposures and the lethal exposure time decreased exponentially as temperature increased. The lethal temperature (52.0±1.1°C) for a 15 min exposure using this technique was comparable to the critical temperature (52.2±1.2°C) when roots were exposed to gradually increasing temperatures (4°C per h). Total protein content of roots began to decrease as temperatures increased from 35 to 40°C and the temperature corresponding to 50% reduction in total proteins was 49.1±2.2°C.  相似文献   

5.
We studied the effects of soil temperature (7, 15, and 25°C) on the growth and photosynthesis of seedlings of the Japanese larch (Larix kaempferi) and its hybrid larch (L. gmelinii × L. kaempferi) to simulate early stages of regeneration after disturbance. At a soil temperature of 7°C, the root length per unit root biomass, chlorophyll concentration, and photosynthetic nitrogen-use efficiency (PNUE) were markedly lower in the Japanese larch than in the hybrid larch, which may indicate that the hybrid larch is better at acquiring water and nutrients. At ambient temperatures of 17–25°C, the light-saturated photosynthesis rate (P sat) of both seedlings grown at a soil temperature of 7°C was lower than at 15 or 25°C. By the 16th week, the needle area, root area, and biomass in seedlings of both types were lower at a soil temperature of 7°C than at soil temperatures of 15 or 25°C. At a soil temperature of 25°C, P sat and nitrogen uptake were lower in both larch species than at 15°C. The growth of the Japanese larch declined sharply from 15 to 25°C; however, the growth of the hybrid larch decreased only slightly from 15 to 25°C. We conclude that an increased soil temperature may retard larch growth in cold regions, especially in the case of the Japanese larch.  相似文献   

6.
Abstract Cold-acclimated stems of red-osier dogwood (Cornus sericea L.) were sampled in midwinter and early spring and subjected to the following low temperature treatments: (a)0 →?40 → 0°C; (b) 0 →?40 →? 196 → 0°C; (c) 0 →?40 →?196 →?269 →?196 → 0°C; (d) 0 →?40 →?269 →?196 → 0°C; (e) 0 →?196 → 0°C; (f) 0 →?269 →?196 →0°C. The cortical parenchyma cells of the outer stem layers survived exposure to ?269°C when pre-frozen to ?40°C and either transferred directly to ?269°C or to ?196°C and then to ?269°C (treatments c and d). Acclimated stems transferred to a greenhouse (22°C) 2 weeks prior to the low temperature treatments deacclimated and were not able to survive freezing to ?10°C. Cortical cells of stem samples taken in March, near the time when dogwood naturally deacclimates, survived ?196°C (treatment b), but not ?269°C (treatment cord). Thus, the freezing tolerance of dogwood varies seasonally from near ?10°C to below ?269°C.  相似文献   

7.
We investigated the effects of low nocturnal temperature on photosynthetic apparatus of winter rapeseed (Brassica campestris L.). An artificial climate chamber was used to simulate the effects of low nocturnal temperature on seedling and stomatal morphology, chloroplast ultrastructure, photosynthetic parameters, and dry matter distribution and accumulation in two winter rapeseed cultivars, Longyou-7 (ultra coldresistant) and Tianyou-2 (weak cold resistance). Compared with those at diurnal/nocturnal temperatures of 20°/10°C (control), rapeseed seedlings at 20°/5°C had increased leaf chlorophyll content, deepened green leaf color, decreased stomatal conductance (Gs), intercellular CO2 concentration (Ci), and photosynthetic rate (Pn), and improved root/shoot ratio; the majority of stomata remained open in Longyou-7 while those in Tianyou-2 were mostly closed or semi-closed. At diurnal/nocturnal temperatures of 20°/–5°C, rapeseed seedlings had decreased leaf chlorophyll content with increased Ci but decreased Gs and Pn; Tianyou-2 exhibited ruptured chloroplast membrane, dissolved grana, broken stroma lamella, and decreased root/shoot ratio, whereas Longyou-7 had chloroplasts retaining partial structure of grana with a small amount of starch granules in guard cells. Low nocturnal temperature damaged the photosynthetic membrane of chloroplasts and reduced Pn in the leaves of winter rapeseed influencing photosynthetic processes in this crop. The reduction of Pn was mainly related to stomatal limitation at diurnal/nocturnal temperatures of 20°/5°C and non-stomatal limitation at diurnal/nocturnal temperatures of 20°/–5°C.  相似文献   

8.
In the past three decades, flowering dogwood (Cornus florida) populations have experienced severe declines caused by dogwood anthracnose. Mortality has ranged from 48% to 98%, raising the concern that the genetic diversity of this native tree has been reduced significantly. In this study, we investigated levels of genetic diversity and population structure of flowering dogwood populations in the Great Smoky Mountains National Park (GSMNP). Understanding the factors influencing geographic distribution of genetic variation is one of the major concerns for preserving biodiversity and conservation of native populations. Eighteen microsatellite loci were used to evaluate the level and distribution of genetic variation of native flowering dogwood trees throughout the GSMNP. Significant genetic structure exists at both landscape and local levels. Two genetic clusters exist within the park and are separated by the main dividing ridges of the Great Smoky Mountains. The differentiation of the clusters is subtle, but statistically significant. Gene flow, evident through low-elevation corridors, indicates that nonrandom mating occurs between related individuals despite wide dispersal of seeds. Although high mortality rate and reduced fecundity caused by dogwood anthracnose severely affected native flowering dogwood populations throughout the entire GSMNP, this study confirmed that considerable genetic diversity still exists at the population level. It seems unlikely that recent demographic dynamics have resulted in a depletion of genetic variation.  相似文献   

9.
The establishment and productivity of a Manchurian walnut (Juglans mandshurica Maxim.) plantation can be improved by inter-planting with larch (Larix gmelini Rupr.) in Northeast China, but the potential mechanism remains obscure. We carried out a series of experiments in a 20-year-old mixed-species plantation, as well as in Manchurian walnut and larch plantations. Manchurian walnut seedlings had difficulty surviving in the Manchurian walnut plantation because their growth was inhibited by their own soil and root exudates. In sharp contrast, Manchurian walnut seedlings grew well in larch and mixed-species plantations. Larch soil and root exudates greatly stimulated the growth of Manchurian walnut seedlings in controlled conditions. In particular, larch root exudates can increase the soil microbial populations, including bacteria, actinomycetes, azotobacter and cellulose-decomposing microorganisms; larch root exudates can also increase the enzyme activities of saccharase, urease, proteinase and polyphenol oxidase. Significant results led to a rapid degradation of the root-exuded phytotoxic juglone from Manchurian walnut. Manchurian walnut root exudates contained juglone at a high concentration of 121.3?±?6.6 mg g?1, while juglone concentrations in the soil beneath Manchurian walnut trees ranged from 2.9–6.2 µg g?1 soil. It appears from the results that juglone may be released from Manchurian walnut roots into the soil in a sufficient quantity but rapidly degrades due to interactions with soil factors. Furthermore, juglone was more resistant toward degradation in the Manchurian walnut soil (t 1/2 ?=?7.36?±?0.63 h) when compared to the larch soil (t 1/2 ?=?4.66?±?0.82 h). The results suggest that larch may improve the establishment and productivity of Manchurian walnut in a mixed-species plantation through the release of root exudates.  相似文献   

10.
Although aflatoxin (AFT) effects on Arachis hypogaea seed germination have been examined, there have been few, if any, investigations correlating germination capacity to field AFT levels for naturally contaminated peanuts. Here, we report this analysis for selected Federal samples containing 0–20 ppb AFT collected at intervals during both September and October 1981. Following the removal of both decoated and split seeds for screening, seeds were germinated for 5 days when both dead and severely infested seeds were discarded. The remaining seeds, normal (uninfested) ‘sprouted’, ‘sprouted’ with some infestation, ‘sprouted’ with morphological abnormalities and normal unsprouted, were both measured and transferred to fresh towels for germination and growth of seedlings. The hypocotyl and primary root lengths of the seedlings were measured. Whereas these lengths ranged from 58·0 ± 6·2 to 68·8 ± 5·6 mm for contaminated seedlings (control 72·5 ± 5·9) at 5 days, hypocotyl and root lengths were 210·0 ± 12·5–225·0 ± 23·0 for contaminated seedlings (control 226·7 ± 21·3) by day 12. Then, percentage germination was 75·0 ± 3·0−84·4 ± 2·5 for toxin seeds control 85·6 ± 1·8). These results suggest that neither the percentage germination nor hypocotyl/ root lengths could be strongly correlated with AFT levels (from natural contamination) for the selected seeds.  相似文献   

11.
  • 1.1. Brain (hypothalamic), skin and body temperatures were measured in hand-reared acclimated (Acc, n = 5) and non-acclimated (NAcc, n =7) rock pigeons (Columba livia, mean body mass 237 g) exposed to increasing ambient temperatures (Ta) (30–60°C) and low humidities.
  • 2.2. In non-panting Acc birds, brain temperature gradually increased from 40.1 ± 0.4°C at 30°C to 41.2 ± 0.4°C at 60°C Ta. A mean body temperature (Tb) of 41.2 ± 0.2°C was measured at Ta up to 50°C; an increase of 1.1°C was observed at 60°C (Tb 42.2 ±0.6°C).
  • 3.3. In Acc panting birds exposed for 2 hr to 60°C, Thy was 41.9 ± 0.8°C and Ts was somewhat (but insignificantly) higher, i.e., 42.2 ± 0.7°C. It looks as if both values were increased as a result of a slight hyperthermia that developed (Tb = 43.5 ± 0.9°C).
  • 4.4. The significance of the present results for evaluating neuronal thermoresponsiveness of birds' hypothalamus is discussed.
  相似文献   

12.
The main objective of the study was to compare the effects of short-duration pH treatments on root hydraulic properties in trembling aspen (Populus tremuloides) seedlings that were either inoculated with the ectomycorrhizal fungus Hebeloma crustuliniforme or remained non-inoculated (control). Inoculated and non-inoculated plants were exposed in solution culture to the root zone pH ranging from 4 to 9 and their root hydraulic conductivity was examined using the hydrostatic method and after subjecting the plants to treatments with 100 ??M HgCl2 (aquaporin blocker) and 0.02% trisodium 3-hydroxy-5,8,10-pyrenetrisulfonic acid (apoplastic transport tracer). In a separate experiment, pure cultures of H. crustuliniforme were also grown on a slid medium with the pH ranging from 4 to 9 to determine their pH growth optimum and changes in medium pH over time in the presence and absence of 8 mM NH4NO3. When grown in pure culture, H. crustuliniforme demonstrated maximum growth at pH 7?C8 and was capable of modifying the pH of its growth media, especially in the presence of NH4NO3. The plants that were inoculated with H. crustuliniforme had a maximum root hydraulic conductivity at pH 7. At this pH, root hydraulic conductivity was significantly higher compared with non-inoculated plants and showed greater sensitivity of root water transport to pH changes relative to non-inoculated seedlings. Relative apoplastic flux was largely unaffected by pH in inoculated seedlings. Fungal inoculation modified the response of root hydraulic conductivity to pH. The increased root hydraulic conductivity in inoculated seedlings was likely due to an increase in aquaporin-mediated cell-to-cell water transport, particularly at the higher pH. A possible role of fungal aquaporins in the root hydraulic conductivity responses of mycorrhizzal plants should be examined.  相似文献   

13.
The purpose of this work was to examine environmental control of expression, at the mRNA level, of cold-inducible genes and to test the relationship of the expression of the genes to cold acclimation. Barley plants (Hordeum vulgare L. cv. Igri) at the three- to four-leaf stage were (a) grown in different temperature environments between 20/15°C and +4/-4°C or (b) transferred between 20/15°C and 6/2°C or (c) grown under drought or nutrient stress conditions. Frost hardiness (using a regrowth method) and mRNA levels for three cold-induced genes, blt4-9, blt14 and blt101, from meristematic crown tissue (vegetative shoot meristem plus subtending stem and associated root initials) were measured. Hardiness and levels of blt4-9, blt14 and blt101 mRNAs increased with lower growth temperatures, below a maximum inductive temperature. Prior temperature environment and plant age affected the rate of change in mRNA levels of these genes in response to a change of temperature environment. Hardiness was strongly correlated with mRNA levels of these genes in plants grown in different temperature environments. This correlation did not extend to plants exposed to drought or nutrient stresses. Implications are drawn for plant responses to a warmer climate.  相似文献   

14.
Reversibility of chilling injury to corn seedlings   总被引:7,自引:4,他引:3       下载免费PDF全文
Seedlings of corn (Zea mays) were tested for recovery from chilling injury incurred at 0.3 ± 0.3 C. At 0.3 C visual leaf injury appeared in 36 hours, whereas stem and root injuries appeared later. Appearance of leaf injury was preceded by a rise in O2 uptake and a lessened effect of 2,4-dinitrophenol on O2 uptake by leaf segments and was accompanied by increased ion leakage from the leaves. These effects were reversible, in that transfer of seedlings to 21 C after 36 hours at 0.3 C produced a return of O2 uptake, 2,4-dinitrophenol stimulation, and ion leakage to the levels of unchilled leaves, as well as a disappearance of leaf symptoms, within 72 hours. For most seedlings, transfer to 21 C after 48 to 60 hours at 0.3 C reversed the chilling effects on O2 uptake, 2,4-dinitrophenol stimulation, and injury symptoms but not on ion leakage within 108 hours. However, some seedlings collapsed during 48 to 60 hours of chilling, and these never recovered. Transfer to 21 C after 72 hours at 0.3 C did not produce recovery from any symptom of chilling injury examined, and these seedlings soon died. No growth occurred at 0.3 C, but growth began soon after transfer to 21 C. Seedlings chilled 24 or 36 hours grew at reduced rates during the first 72 hours at 21 C, but within 96 hours at 21 C were growing at the same rate as nonchilled seedlings. These results demonstrate considerable capacity of growing plants to recover from short chilling treatments even though significant physiological changes occurred at low temperatures.  相似文献   

15.
The first trees in New York were Middle Devonian (earliest Givetian) cladoxyls (?Duisbergia and Wattieza), with shallow-rooted manoxylic trunks. Cladoxyl trees in New York thus postdate their latest Emsian evolution in Spitzbergen. Progymnosperm trees (?Svalbardia and Callixylon–Archaeopteris) appeared in New York later (mid-Givetian) than progymnosperm trees from Spitzbergen (early Givetian). Associated paleosols are evidence that Wattieza formed intertidal to estuarine mangal and Callixylon formed dry riparian woodland. Also from paleosols comes evidence that Wattieza and Callixylon required about 350 mm more mean annual precipitation than plants of equivalent stature today, that Wattieza tolerated mean annual temperature 7 °C less than current limits of mangal (20 °C), and Callixylon could tolerate temperatures 14 °C less than modern mangal. Devonian mangal and riparian woodland spread into New York from wetter regions elsewhere during transient paleoclimatic spikes of very high CO2 (3923 ± 238 ppmv), and subhumid (mean annual precipitation 730 ± 147 mm) conditions, which were more likely extrinsic atmospheric perturbations rather than consequences of tree evolution. For most of the Middle Devonian CO2 was lower (2263 ± 238 ppmv), and paleoclimate in New York was semiarid (mean annual precipitation 484 ± 147 mm). Such transient perturbations and immigration events may explain the 40 million year gap between the late Emsian (400 Ma) evolution of trees and Famennian (360 Ma) CO2 drawdown and expansion of ice caps.  相似文献   

16.
17.
This study examined temperature acclimation, growth, and photosynthetic characteristics of the zygote-derived seedlings of Hizikia fusiformis (Harvey) Okamura (Sargassaceae). The seedlings were cultured at 15°C or 25°C for 4 weeks. The average relative growth rate was significantly higher in seedlings acclimated at 25°C. The photosynthetic rate measured at 15°C was much higher in seedlings grown at 15°C than those grown at 25°C, indicating photosynthetic acclimation to a lower temperature. At 35°C, the photosynthetic rate of 15°C-grown seedlings was drastically decreased, whereas that of 25°C-grown seedlings was significantly increased. The maximum relative electron transport rate (rETRmax) measured at the respective growth temperature was significantly higher in seedlings grown at 25°C than at 15°C. At a measuring temperature of 35°C, the rETRmax in both 15°C- and 25°C-grown seedlings were considerably reduced with regard to those measured at 15°C or 25°C. Our results suggested that, compared with the seedlings grown at 25°C, those acclimated at a lower temperature could be disadvantaged under adverse conditions such as increased temperatures.  相似文献   

18.
The role of nitric oxide (NO) in thermotolerance acquired by heat acclimation (38°C) was investigated. Results showed that 38°C acclimation, on the one hand, obviously reduced hydrogen peroxide (H2O2) and MDA contents and ion leakage degree in rice leaves; however, on the other hand, it increased the survival of rice (Oryza sativa L.) seedlings under 50°C heat stress. Application of nitric oxide donor, sodium nitroprusside (SNP), prior to 38°C acclimation dramatically increased the acquired thermotolerance. To elucidate the role of endogenous NO in acquired thermotolerance, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO, a specific NO scavenger) was used (scavengers are used to control the level of both exogenous and endogenous NO). Results showed that PTIO pretreatment resulted in the elimination of acquired thermotolerance induced by 38°C acclimation in rice seedlings. Nitric oxide (NO) release measurement indicated that there was indeed an abrupt elevation in the NO content in 40 min after 38°C acclimation, proving the involvement of NO in acquired thermotolerance inducement in rice seedling.  相似文献   

19.
Relative nuclear DNA contents in cortex parenchyma cells in root segments of 3- and 7-d-old soybean seedlings grown at 25 °C and in plants grown for 3 d at 25 °C, and then for 4 d at 10 °C, were determined with cytophotometry. Measurements revealed that in each variant the cortex cell nuclei with DNA content between 2C and 8C were in all the examined segments and nuclei with 8C – 16C DNA appeared in higher parts of roots. However, in chilled plant cells the number of 8C – 16C DNA nuclei was very low. Therefore, chilling inhibited endoreplication in comparison with plants grown at 25 °C for 7 d, and even reduced endopolyploidy level as compared to the initial seedlings, i.e. 3-d-old plants. DNA contents in root hairs grown at 25 °C (control) and in root hairs emerged at 10 °C were also determined. In controls 4C – 8C DNA nuclei predominated while in chilled plants an additional population of 2C – 4C DNA appeared. Thus a reduction of DNA synthesis was brought about by low temperature. The occurrence of an intermediate DNA contents besides those with full endoreplication cycles suggests the possibility of differential DNA replication. This suggestion seems to be supported by the lack of 3H-thymidine incorporation into root hair nuclei at the examined developmental stage both in control and chilled root hairs. The same number, but larger, chromocentric lumps in polyploid cortex cell nuclei of higher root zones, in comparison to meristematic nuclei, suggests that endoreduplication process occurred. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Pueppke SG  Payne JH 《Plant physiology》1987,84(4):1291-1295
We evaluated the symbiotic phenotypes of nodulation-restrictive and normal soybean isolines by inoculating Clark (genotypically Rj1Rj1) and mutant Clark-rj1 (genotypically rj1rj1) seedlings in plastic growth pouches. Nodules first appeared on Clark seedlings inoculated with Bradyrhizobium japonicum USDA 94 after 6 days. The mean number of nodules per plant was 13.9 ± 0.8 after 24 days. In contrast, Clark-rj1 seedlings first nodulated at 12 days, and the mean number of nodules per plant was only 1.7 ± 0.3 at 24 days. Segments from infectible zones of primary roots, i.e. near the position occupied by the root tip at the time of inoculation, were sectioned serially. Clark roots contained cortical cell divisions and a few infection threads in question mark-shaped root hairs by 2 days after inoculation. Typical nodules developed soon thereafter. Analogous serially sectioned segments from Clark-rj1 roots lacked these responses. This prompted us to section nodules and adjacent tissues from other parts of Clark and Clark-rj1 roots. Clark roots contained cortical cell divisions, many associated with infected root hairs. Cortical cell divisions occasionally were present in Clark-rj1, and a few infection threads were visible in surface cells. The presence of infection threads within Clark-rj1 nodules was confirmed by transmission electron microscopy. Thus, although B. japonicum USDA 94 fails to elicit the wild-type spectrum of responses in the infectible zones of primary roots, it can infect Clark-rj1 via infection threads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号