首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Forty-four undergraduate students enrolled in a psychology course entitled Biofeedback and Self-Regulation over a period of three semesters. Twenty percent of each student's grade in the course was derived from the level of self-regulation skills, as measured in an individual performance examination. Results show students can develop impressive self-regulation skills in a course format. Results also indicate that the performance examination measures abilities which are altogether different from those utilized in written examinations.  相似文献   

3.
Forty-four undergraduate students enrolled in a psychology course entitled "Biofeedback and Self-Regulation" over a period of three semesters. Twenty percent of each student's grade in the course was derived from the level of self-regulation skills, as measured in an individual performance examination. Results show students can develop impressive self-regulation skills in a course format. Results also indicate that the performance examination measures abilities which are altogether different from those utilized in written examinations.  相似文献   

4.
The interface between evolutionary biology and the biomedical sciences promises to advance understanding of the origins of genetic and infectious diseases in humans, potentially leading to improved medical diagnostics, therapies, and public health practices. The biomedical sciences also provide unparalleled examples for evolutionary biologists to explore. However, gaps persist between evolution and medicine, for historical reasons and because they are often perceived as having disparate goals. Evolutionary biologists have a role in building a bridge between the disciplines by presenting evolutionary biology in the context of human health and medical practice to undergraduates, including premedical and preprofessional students. We suggest that students will find medical examples of evolution engaging. By making the connections between evolution and medicine clear at the undergraduate level, the stage is set for future health providers and biomedical scientists to work productively in this synthetic area. Here, we frame key evolutionary concepts in terms of human health, so that biomedical examples may be more easily incorporated into evolution courses or more specialized courses on evolutionary medicine. Our goal is to aid in building the scientific foundation in evolutionary biology for all students, and to encourage evolutionary biologists to join in the integration of evolution and medicine.  相似文献   

5.
In these laboratory exercises, developed for a sophomore/junior-level undergraduate course in Developmental Biology, students explore the processes of differentiation and morphogenesis in sea urchin embryos by monitoring the spatio-temporal expression pattern of the endoderm marker, alkaline phosphatase. Once students have determined the normal alkaline phosphatase expression pattern, they are asked to treat sea urchin embryos in some way that perturbs normal morphogenesis. Their task is to discover whether the chosen treatment perturbs both morphogenesis and differentiation of the gut or only morphogenesis. The ease with which sea urchin embryos can be cultured and manipulated provide the Developmental Biology instructor with a powerful system for inviting students to explore questions regarding differentiation and morphogenesis.  相似文献   

6.
7.
The National Research Council-sponsored report, BIO 2010: Transforming Undergraduate Education for Future Research Biologists, describes a number of significant changes that should be made to the undergraduate biology curriculum if we are to adequately train students to become the researchers of the 21st century. What should be of concern to the physiology community is the lack of identifiable physiology in the proposed revisions. This article describes the report and suggests some steps that physiologists can take to enhance our discipline in the undergraduate biology curriculum.  相似文献   

8.
Population genetics is often taught in introductory biology classes, starting with the Hardy-Weinberg principle (HWP) and genetic drift. Here I argue that teaching these two topics first aligns neither with current expert knowledge, nor with good pedagogy. Student difficulties with mathematics in general, and probability in particular, make population genetics difficult to teach and learn. I recommend an alternative, historically inspired ordering of population genetics topics, based on progressively increasing mathematical difficulty. This progression can facilitate just-in-time math instruction. This alternative ordering includes, but does not privilege, the HWP and genetic drift. Stochastic events whose consequences are felt within a single generation, and the deterministic accumulation of the effects of selection across multiple generations, are both taught before tackling the stochastic accumulation of the effects of accidents of sampling.  相似文献   

9.
Undergraduate biology majors require biological literacy about the critical and dynamic relationships between plants and ecosystems and the effect human-made processes have on these systems. To support students in understanding systems relationships, we redesigned an undergraduate botany course using an ecological framework and embedded systems modelling to support students in understanding the criticality of plant processes to the global carbon cycle. The class meetings included lectures, opportunities to develop systems models identifying the relationships between plant processes and other systems, reflections on their systems understanding and open-floor discussions about assigned primary and secondary readings that explored the relationships between plant systems, abiotic and biotic processes and global carbon cycling in their systems models. We used the systems models students developed at the beginning and end of the course to examine how their systems understanding grew. Our results suggest that at the beginning of term, students’ ideas about plants were egocentric identifying the purpose of plants was to support human life and they did not consider relationships between plants and global carbon systems. By the end of the term, their models and reflections identified elements of a systems perspective and the students considered human impact on this delicate balance.  相似文献   

10.
A typical undergraduate biology curriculum covers a very large number of concepts and details. We describe the development of a Biology Concept Framework (BCF) as a possible way to organize this material to enhance teaching and learning. Our BCF is hierarchical, places details in context, nests related concepts, and articulates concepts that are inherently obvious to experts but often difficult for novices to grasp. Our BCF is also cross-referenced, highlighting interconnections between concepts. We have found our BCF to be a versatile tool for design, evaluation, and revision of course goals and materials. There has been a call for creating Biology Concept Inventories, multiple-choice exams that test important biology concepts, analogous to those in physics, astronomy, and chemistry. We argue that the community of researchers and educators must first reach consensus about not only what concepts are important to test, but also how the concepts should be organized and how that organization might influence teaching and learning. We think that our BCF can serve as a catalyst for community-wide discussion on organizing the vast number of concepts in biology, as a model for others to formulate their own BCFs and as a contribution toward the creation of a comprehensive BCF.  相似文献   

11.
Drugs fail in clinical studies most often from lack of efficacy or unexpected toxicities. These failures result from an inadequate understanding of drug action and follow, in part, from our dependence on drug discovery technologies that do not take into account the complexity of human disease biology. Biological systems exhibit many features of complex engineering systems, including modularity, redundancy, robustness, and emergent properties. Addressing these features has contributed to the successful design of an improved biological assay technology for inflammation drug discovery. This approach, termed Biologically Multiplexed Activity Profiling (BioMAP), involves the statistical analysis of protein datasets generated from novel complex primary human cell-based assay systems. Compound profiling in these systems has revealed that a surprisingly large number of biological mechanisms can be detected and distinguished. Features of these assays relevant to the behaviour of complex systems are described.  相似文献   

12.
Studies on mice lacking the peroxisome proliferator-activated receptor (PPAR) suggest that PPAR ligands reduce lipid accumulation in foamy macrophages, and may target other receptors. These findings warrant an in-depth investigation into the gene regulatory mechanisms of PPAR ligands, which are currently being developed as drugs to treat atherosclerosis and diabetes.  相似文献   

13.
《生物信息学》本科教学初探   总被引:2,自引:0,他引:2  
针对生物信息学本科教学中的教学方法、实验教学、考核办法以及如何与现代教育技术相结合进行了初步的探索,并对如何提高教学效果培养跨学科的生物信息学人才做了深入思考。  相似文献   

14.
15.
16.
Information literacy skills are critically important for the undergraduate biology student. The ability to find, understand, evaluate, and use information, whether from the scientific literature or from Web resources, is essential for a good understanding of a topic and for the conduct of research. A project in which students receive information literacy instruction and then proceed to select, update, and write about a current research topic in an upper-level cell biology course is described. Students research the chosen topic using paper and electronic resources, generate a list of relevant articles, prepare abstracts based on papers read, and, finally, prepare a "state-of-the-art" paper on the topic. This approach, which extends over most of one semester, has resulted in a number of well-researched and well-written papers that incorporate some of the latest research in cell biology. The steps in this project have also led to students who are prepared to address future projects on new and complex topics. The project is part of an undergraduate course in cell biology, but parts of the assignments can be modified to fit a variety of subject areas and levels.  相似文献   

17.
This study investigated discovery learning pedagogy and its effects on students' achievement and attitudes toward instruction in a lower-division biology course, entitled Structure and Function of Organisms. Instruction was primarily lecture-based but included four discovery learning activities. Results indicate that students had greater achievement on content learned through discovery methods than lecture-based instruction. Findings regarding students' attitudes toward discovery-based instruction suggest that students enjoyed active, discovery-based problems, believed that discovery helped them gain an understanding of the material and helped them to develop skills that could be used in other courses. The study presented here shows that a moderate amount of discovery learning used in combination with traditional methods of instruction may be an effective means for promoting students' achievement.  相似文献   

18.
19.
The topic of psychoactive drugs is one of inherent interest to college students. We used this insight to design and implement a multidisciplinary undergraduate course with psychoactive drugs as the central theme. The Medical Science of Psychoactive Drugs examines the biological mechanisms underlying all major effects of psychoactive drugs, including the effects on the brain and other organs and tissues. Physiological principles, molecular mechanisms, and genetic factors involved in drug-induced therapeutic and adverse effects are emphasized. The course is open to undergraduate students at all levels and carries no prerequisites, and enrollment is limited to approximately 50 students. Major teaching modes include lecture, short homework papers on topics related to the previous class meeting, small-group discussions at several points during each class, and whole class discussions. Because of the diversity of students' knowledge of basic science, we employ a variety of methods designed to help students grasp the necessary scientific concepts. Our methods are intended to be inquiry based and highly interactive. Our goals are 1) to foster the development of an organized knowledge base about psychoactive drugs that will have practical applicability in the daily lives of the students; 2) to promote the rational application of this knowledge in thinking about current medical, social, legal, and ethical issues involving psychoactive drugs; and 3) to cultivate science literacy, critical thinking, and communication skills among students.  相似文献   

20.
Undergraduate laboratory exercises addressing aspects of cancer biology such as increased cell proliferation, gain-of-function signaling mutations and tumour formation often rely on tissue culture or even small mammal models. Many departments have limited or no access to these tools, and even well-equipped departments face logistical problems when incorporating these models into laboratory classes. I have developed a laboratory exercise using the microscopic worm, C. elegans, to demonstrate the effects of Notch receptor mutations on cell proliferation. Notch, which is activated by juxtacrine signaling, is mutated in many human cancers. In this exercise, students compare the germline phenotypes of worms that have a loss-of-function Notch mutation (no cells in the germline) or a gain-of-function Notch mutation (over-proliferation resulting in a germline tumour). Students also genotype the worms and perform sequence analysis to determine the effects of the mutations on the protein sequence. This laboratory exercise demonstrates oncogenic proliferation, correlates genotype to phenotype, exposes students to model organisms and introduces sequence databases and analysis. In addition to cancer biology courses, this exercise could be incorporated in courses with a focus on genetics, cell biology or developmental biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号